
á�2cƨǆǋǑǖƨǍǔíõƀ
GPGPUſƌƏ;ĸ�

´Éś��$(àí$AICS)$
ymatsunaga@riken.jp�

àíƨǔǄƩƗǇśŠàíRICC �ıGPUżðeƄƀƔƿǏƢǖƨǍǔš$
2013}6©27£śàíǕŇ¬ºaľǂǖǐ�

/i�

•  GPUſƌƏá�2cƨǆǋǑǖƨǍǔ(ǌǖƧǖƀĚ×ŧƍ)$
–  á�2cƨǆǋǑǖƨǍǔſŸţźŝ¥ŊƪƢǖǐƀSŗ$

–  �žá�2cƨǆǋǑǖƨǍǔƼƱƢǖƩƀGPUƦǄǖƵÜÌżǀǔ
ưǅǖƠ$

–  AMBERƒ�ŷŴǅƖƠǒñƀƨǆǋǑǖƨǍǔ$

•  GPUſƌƏƵǎƩƘƠƵǏĝµ$
–  ¨ĳƀƨǆǋǑǖƨǍǔƀ&N(`ę¾ǕĄĆè)$

–  GPUƒ�ŷŴĝµƀ4Ã(MATLAB�â)$

•  ƇżƉ$

GPUſƌƏá�2cƨǆǋǑǖƨǍǔ$
ǌǖƧǖƀĚ×ŧƍ�

á�2cƨǆǋǑǖƨǍǔżƁǘ�

Matsunaga,$Y.$et$al.$“Minimum$Free$Energy$Path$of$
LigandPInduced$TransiRon$in$Adenylate$Kinase.”$
PLoS%Comput.%Biol.$8,$e1002555$(2012).�

ǏƝǔƶĂLſ�ŤƔƴƸǐŁƞƷǖƭƀ¼Ĺ^@$
(Ŧƌų0.1ǆǏñƀ¥ŊƪƢǖǐ)�•  êè$

ƸǋǖƵǔ¡ó�ƒĶ�ĝţźŝ2cƀ�?ƒ
DcǑǀǐƀĝ'�ŻěkŰƏŞǅƠǒž�Ĭ
ƒŝ2cƀǆƠǒž�ĬſZŹŪàĨŻħƅź
àĝŰƏ$
$

•  ßXGƎ�ťƏüƀƦƖƫżƮǖƣƱƵ$
����(Dc$(P«]ä±�)$
È2cǕċĬƒōſOƉźŝŀÿŝČƮǔƼƠ
Ĭŝ2cǉǖƮǖ(ƀ�Ŀ)žŽƒ�ŤſƁŦų
ƍŪA2$

$
•  ¥ŊƪƢǖǐƀSŗ$

�$ô2ƀ¥ŊƪƳƱƿƁƾƘǇƵ(10P15)ñ$
á�2cƀÛ�èž¥ŊƪƢǖǐƁržŪżƊ
ǅƖƠǒ(10P6)ƇŴƁǆǏ(10P3)ñ$

GPUƒ�ŷźǅƖƠǒñ��ƀƨǆǋǑǖƨǍǔ
Ũ£{èſJĊſžƏƀŻƁż«��

á�2cƨǆǋǑǖƨǍǔƀǃƵǐƹƱƠ�

V r() = kij rij − r0()2

bonds
∑

 + kijk θijk −θ0()2

angles
∑

 + kijkl 1+ cos nφijkl −ω()⎡⎣ ⎤⎦
torsions
∑

 + ε ij
σ ij

rij

⎛

⎝⎜
⎞

⎠⎟

12

−
σ ij

rij

⎛

⎝⎜
⎞

⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥j>i

∑
i
∑

 +
qiqj

4πε0rijj>i
∑

i
∑ O(N2)�

PumMaƀHPŧƍįı�

ElectrostaRc$term$

ňĮŒë��âŨ
ǃƵǐƹƱƠ�

vdW$term$

�žá�2cƨǆǋǑǖƨǍǔƼƱƢǖƩƀ$
GPUƦǄǖƵÜÌ$(2013}6©¥×)�

•  CHARMM$
¨ Ù(c37b1)ŻCPUƤǖƶƀřĸ@ŨĕƑƐƏżżƊſ(ŖY2:$DOMDEC)ŝ
OpenMMƒ�ŷŴGPUğøƒƦǄǖƵ$

•  AMBER$
NVIDIAïżƀƿǒƩƘƠƵŻŝpmemdǉƩǋǖǐ(AMBERƀMDƙǔƩǔ)ƀnaRve
žGPUƦǄǖƵŨĕƑƐźũŴŞû�ƒĒżŰ�ƑƎſń�èžřĸ@ŨUƍ
ƐŝƻơƾƕƠƪżżƊſÄşżfgŮźũźţƏ$

•  NAMD$
direct$part(cutoffğø)ƀGPUğøƒƦǄǖƵŞreciprocal$partƁCPUŻğø$$

•  GROMACS$
ŬƐƇŻOpenMMƒ�ŷźGPGPUƒƦǄǖƵŮźţŴŨŝ¨ Ù(ver$4.6�Ō)Ż
naRveſGPGPUƒƦǄǖƵ�

Benchmark:$DHFR�
System:$DHFR$in$explicit$solvent$
Size:$23,558$atoms$(23,569$for$GROMACS)$
CPU:$Intel$Xeon$E5P2630$x2(12$cores)$
GPU:$NVIDIA$GeForce$GTX680$
CUDA:$CUDA$Toolkit$4.2,$driver304.54
OS:$Linux$kernel$3.0.0P27$(Ubuntu$11.10)$
Ensemble:NVEandNPT
Rme$step$Δt$=$2fswith$SHAKE$or$LINCS$
ElectrostaRc:$PME,$cutoff$=$9A$
Programs:$pmemd.cuda_SPFP$of$AMBER$12$
(bugfix18applied),$NAMD$nightly$build$
(2013P06P16),$GROMACS$4.6.2$single$precision$
Input$files:$JAC$benchmark$files$were$usedfor
NAMDandAMBER.$gromacsPgpubenchP
dhfr.tar.gzforGROMACS$(modified$forNVE
and$NPT).$

Benchmark:$DHFR�

0$ 10$ 20$ 30$ 40$ 50$ 60$ 70$

GROMACS$

NAMD$

AMBER$

ns/day�

GPU$

CPU$

0$ 10$ 20$ 30$ 40$ 50$ 60$ 70$

GROMACS$

NAMD$

AMBER$

ns/day�

GPU$

CPU$

NVE$ensemble$(gôǕgƙƹǐƟǖ±�)�

NPT$ensemble$(gWǕgÑ±�)�

*$GROMACS$is$single$precision�

Benchmark:$ApoA1�
System:$ApoA1$in$explicit$solvent$
Size:$92,224$atoms$
CPU:$Intel$Xeon$E5P2630$x2(12$cores)$
GPU:$NVIDIA$GeForce$GTX680$
CUDA:$CUDA$Toolkit$4.2,$driver304.54
OS:$Linux$kernel$3.0.0P27$(Ubuntu$11.10)$
Ensemble:NVEandNPT
Rme$step$Δt$=$2fswith$SHAKE$
ElectrostaRc:$PME,$cutoff$=$9A$
Programs:$pmemd.cuda_SPFP$module$
AMBER12(bugfix18applied),$NAMD$
nightly$build$(2013P06P16)$
Input$files:$benchmark$file$providedby
NAMD$group$was$converted$to$AMBER$
formatbyusing$chamber$moduleof
AmberTools.$

Benchmark:$ApoA1�

0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$

NAMD$

AMBER$

ns/day�

GPU$

CPU$

0$ 2$ 4$ 6$ 8$ 10$ 12$ 14$ 16$

NAMD$

AMBER$

ns/day�

GPU$

CPU$

NVE$ensemble$(gôǕgƙƹǐƟǖ±�)�

NPT$ensemble$(gWǕgÑ±�)�

KƼƱƢǖƩƀ"�èžő��
•  CHARMM$

–  Ƈŵ¨ ÙŨ�ſ+ŷźŦƍűŝĤŮţ�[Ũžţ$

•  AMBER$
–  ß¥×Ż¨ƊGPUƀ��ƒHūźţƏŞImplicitÕbżû�(SPFPǉƴǐ)ƀ
hĖſŋŰƏĨ�Ɓ1ŴŨŝExplicitÕb(PME)ƀhĖĨ�ŨƇŵ1źţž
ţŞû�ƒĒżŮŴŬżſƌƏ�ŔŨ��§ſ»ġŭƐźţŪż�ƑƐƏ$

•  NAMD$
–  ƊżƊż_Ūƀƺǖƶƒ�ŷźƪƢǖǏǔơŰƏƌŤſĠğŭƐźţƏ(ŖY2
:žŽ)ƀŻŝGPUƒ�ŤƌƎƁŴŪŭƓƺǖƶƒ�ŷŴğøŻƼƾƚǖǅǔƪ
Ũ1Ə$

•  GROMACS$
–  ƊżƊżƀCPUNūƀưǋǖƸǔơ(SIMD¨Ľ@)Ũ0ƇůŪŝCPUğøżGPU
ğøŻƁƇŵųƐƆŽwŨžţ�

AMBERƒ�ŷŴGPUğøƀÔ%�

•  ¨4ƁGPUƀǈǉǏưƘƱƠ$
–  memtestG80$Ƌścuda_memtest$ƒ�Ť$

$memtestG80$hnps://github.com/ihaque/memtestG80$

•  AMBERƀƤǔƼƖǐ$
–  AMBERƀGPUƦǄǖƵǁǖƩƒEćſśhnp://ambermd.org/gpus/$
–  �ű¨ ƀbugfixƒŢźƏ(ƖǔƪƵǖǐ¥ſč?èſƼƱưŭƐƏ)$

ƻơƾƕƠƪ�[śhnp://ambermd.org/bugfixes12.html$$
5©­ſśbugfix18Ũ,ŉŭƐŴŞ$NPTƀǏƪƮǖƵSŗžŽŃĘž!ÂŨ¢ŭƐźţƏ$

–  ƳƪƵ$
•  �sƀƪƠǏƿƵƒâţƏ(make$test.cuda$ż$./test_amber_cuda_paralle.sh)$
•  č8ƀƳƪƵŞŉæĈƀ��¦Ū$cellulose$NVE$ƒ10�ƪƳƱƿŝMů	�ƨǖƶŻ2T
Ƌŷźŝ¨āĂ¶(ƙƹǐƟǖ)ŨMůŧưƘƱƠŰƅũŵŝżƀŬż$(SPFPƀ\L)$
–  Eć$Amber$ML$hnp://archive.ambermd.org/201305/0409.html$

č8ƀGPUǅƨǔŻğøŰƏ\L�

RICCƒ�Ť\L�

ƖǔƪƵǖǐÐƈƀƻƖƷǏƒ�âJĊ�

AMBERƀhĖǗSPFP$precision$model�
Numerical$Stability�

Le$Grand,$S.,$Götz,$A.$W.$and$Walker,$R.$C.$“SPFP:$Speed$without$compromise
—A$mixed$precision$model$forGPUaccelerated$molecular$dynamics$
simulaRons.”$Computer%Physics%Communica9ons$184,$374–380$(2013).�

378 S. Le Grand et al. / Computer Physics Communications 184 (2013) 374-380

Table 5
Energy drifts per degree of freedom (kT/ns/dof) from GB implicit solvent
simulations of 100 ns (TRPCage), 50 ns (ubiquitin) and 20 ns (apo-Myoglobin). The
SHAKE algorithm to constrain bond lengths to hydrogen atoms was used for a time
step of 2.0 fs. no constraints were used for smaller time steps.

GPU (SPFP)
GPU (SPDP)

GPU (DPDP)
CPU

Time step 0.5 fs 1.0 fs 2.0 fs

TRPCage (304 atoms)
CPU 0.000006 0.000066
GPU (DPDP) 0.000012 0.000082
GPU (SPDP) 0.000003 0.000070
GPU (SPFP) 0.000011 0.000066
ubiquitin (1231 atoms)
CPU 0.000004 0.000011
GPU (DPDP) 0.000001 0.000006
GPU (SPDP) 0.000003 0.000030
GPU (SPFP) -0.000003 0.000006
apo-myoglobin (2492 atoms)
CPU 0.000012 0.000094
GPU (DPDP) -0.000004 0.000117
GPU (SPDP) 0.000019 0.000185
GPU (SPFP) -0.000004 0.000122

0.000355
0.000382
0.000222
0.000355

-0.000216
-0.000247
-0.000165
-0.000350

0.000416
0.000290
0.000139
0.000254

initial equilibration for Ins at 300K using Langevin dynamics.
Details of the simulations are as described above for the water
droplets/boxes. The center of mass motion was removed before
starting the constant energy runs. We investigated simulations
using time steps of 0.5 fs and 1.0 fs without constraints as well as
a time step of 2.0 fs with bonds to hydrogen atoms constrained
using the SHAKE algorithm with a relative geometrical tolerance
of 10~6 A. We restrict ourselves to an analysis of the SPFP
precision model in comparison to published results [9] for the SPDP
and DPDP precision models as well as the double precision CPU
implementation for implicit solvent GB simulations. Input files for
these simulations are provided in the Supporting Information. A
detailed discussion of results for explicit solvent PME simulations
are presented in another publication [19].

Table 5 summarizes the energy drifts in kT per degree of
freedom (dof) while Fig. 2 shows a plot of the total energy for
the trajectories with the different precision models at a time
step of 0.5 fs. Plots for the larger time steps are shown in the
Supporting Information. The SPFP precision model is able to
conserve energy to the same degree as the other precision models
and the reference CPU implementation, making numerically stable
simulations possible.

3.3. Simulation stability

We have verified that simulations are indeed numerically
stable by performing a series of 50 independent MD simulations
of ubiquitin with the SPFP precision model and comparing the
trajectories with published results [9] for the other precision
models of our GPU implementation as well as the double precision
CPU implementation. We analyze root-mean-square deviations
(RMSDs) and root-mean-square fluctuations (RMSFs) of the C„
backbone carbon atoms with respect to the crystal structure
(PDB code 1UBQ [24,25]). The highly flexible end tail of ubiquitin
(residues 71-76) was excluded from our analysis. GB trajectories
of 100 ns length using a time step of 2.0 fs were generated with
settings as described above for the water droplets, however,
using the Berendsen weak coupling thermostat [26] with a target
temperature of 300 K and a time constant of ty = 10.0 ps for the
heat bath coupling. The initial coordinates and velocities that form
the starting point of the 50 trajectories were generated using the
CPU implementation using a protocol as published [9]. Input files
for these simulations are provided in the Supporting Information.

Fig. 3 contains plots of the RMSD vs time. It shows that MD
simulations using the GPU implementation with the SPFP precision
model have the same numerical stability as GPU based simulations

4

2
0

-2 i

TRPCage

20 40 60 80 100

2 •
— 0

-2 •

uT -4

4

2

0

-2

-4

Ubiquitin

mmmtmm mmmm
0 1 0 2 0 3 0 4 0 5

.

apo-Myoglobin

10

t ins]

15 20

Fig. 2. Total energy (kcal/mol) along constant energy trajectories using a time step
of 0.5 fs without constraints. Shown are results for TRPCage (top), ubiquitin (center)
and apo-myoglobin (bottom) for different precision models.

using the SPDP and DPDP precision models or the double precision
CPU implementation. The C„ backbone carbon atoms remain
within 3-4 A of the crystal structure for all 50 independent
simulations over the whole 100 ns trajectory. We have shown
earlier [9], that this is not the case for an implementation that
employs single precision floating point arithmetics throughout
since in this case the numerical noise due to rounding errors
can lead to an accumulation of errors such that ubiquitin starts
to unfold. This is not the case for the SPFP precision model
which can be employed for numerically stable long-timescale MD
simulations.

Fig. 4 shows the RMSF values for each residue of the 50 native-
state simulations. An excellent agreement is found between all
precision models of the GPU implementation and the double
precision CPU implementation. The majority of the residues
remain within 2 to 3 A of the experimental structure with
somewhat larger fluctuations around residues 33, 48 and 63. No
major structural change is taking place during the simulations
which confirms that the protein remains within a native-state
ensemble. We thus recommend the GPU implementation of
PMEMD to be used with the SPFP precision model to reduce the
computational cost compared to the SPDP and DPDP precision
models while maintaining numerical stability that is equivalent to
the reference double precision CPU implementation.

4. Concluding remarks

We have implemented a new precision model (SPFP) for
efficient MD simulations on GPU hardware that supports rapid
atomic operations. This model uses a combination of Q24.40 and
Q34.30 fixed arithmetic for accumulation of forces and energies
respectively to deliver numerical precision that is equivalent to
our previously developed hybrid single/double precision (SPDP)
model but with performance on the latest generation of NVIDIA
GPUs (Kepler I, GK104) that is 60-80% faster than our original
SPDP model. There are no discernible differences in results from
our previously validated SPDP model and performance on previous
generation hardware (Fermi series) is the same if not slightly better

•  ǈǏƱƵ$
•  #û�ŻĭŰƌƎƊğøŨĸţ$

•  ƴǈǏƱƵ$
•  �gŮŴ¹�ƌƎ`ũţ$ƁGƎ�ťžţ$$

←$`ũţüžŽ$
•  ¹�Ũ`ũŪ^ƑƏ(dynamic$rangeŨ~ţ)
ż�fg$←$minimizaRonžŽ�

Single$Precision$Fixed$Precision$(SPFP)ƁŝAMBERƀ
GPUğøŻƴƾƚǐƵŻ�âŭƐźţƏû�ǉƴǐ$

1.  ňĮŒë��âƀKŕƒCû�(SP)Żğø$

2.  KŕƒĭŮLƑŲƏŏſƁŝVgq�×(FP)
Żğø(h�Ɓ64Pbit$integerƀğø)$

Foldingofvillin$headpiece$(implicit$solvent)�

folding of HP35 to the native conformation starting from the
fully extended structure. The protein was modeled by using
AMBER FF03 force field that we developed a few years ago
(35). In this work, the native state of HP35 was consistently
reached when the temperature was below the melting temper-
ature of this protein. The high-accuracy folding allowed further
investigation of the protein folding landscape and the thermo-
dynamic properties of HP35, including the folding pathways to
the native state.

Results
Starting from the fully extended polypeptide chain of HP35, we
conducted two sets of 200-ns REMD and three sets of 1.0-!s
CMD simulations. Similar features were observed in both sets
of REMD simulations. For clarity, we report the results mainly
based on one REMD set. We applied a generalized-Born
model (36) to represent the solvation effect. The temperature
of the 20 replicas ranged from 273 K to 500 K. Folding was
examined by the closeness of the simulated structures to the
x-ray crystal structure (6). Subangstrom folding was consis-
tently achieved at temperatures !360 K, with the lowest
C"-rmsd between 0.46 Å and 0.80 Å (excluding terminal
residues Leu1 and Phe35). The best folded structure at 300 K
with 0.46 Å C"-rmsd (all-atom rmsd 1.59 Å) is shown in Fig.
1. The finer characteristic features of HP35, including the exact
boundaries of the secondary structures, were reproduced well
in the simulations. In addition to a high degree of resemblance
between the backbone structures, the packing patterns of the
hydrophobic core are almost identical; the three phenylalanine
residues and other core residues, including Val9, Leu20, Gln25,
and Leu28, are tightly packed against each other and are in
nearly the exact same patterns as those in the x-ray structure
to form the crucial contacts responsible for stabilizing the
protein native structures.

To visualize the folding landscape, we constructed two-
dimensional profiles from the simulations using C"-rmsds of
two segments as the reaction coordinates. Segment A encom-
passes helices I and II, segment B encompasses helices II and
III, and their C"-rmsds are denoted as RA and RB, respectively.
The topology of HP35 dictates that the concurrent folding of
both segments ensures global folding. For comparison, we
performed three additional sets of CMD simulations at 300,
340, and 360 K for, respectively, 20, 10, and 5 trajectories and

1.0 !s for each trajectory (for a combined total of 35.0 !s). The
folding landscapes derived from CMD and REMD bear close
resemblance at the corresponding temperatures (Fig. 2). At
300 K, both folding landscapes showed a highly populated
folded state in a restricted region, a well populated but widely
distributed intermediate state, and a marginally populated
denatured state. The folding landscapes from CMD at 340 and
360 K were also similar to the corresponding landscapes from
REMD, with a highly populated denatured state and sparsely
sampled folded state. The consistency in the folding land-
scapes from REMD and CMD is quite encouraging.

The folding free energy landscape of HP35 at 300 K was
constructed from the population landscape of REMD at 300 K
shown in Fig. 2. The free-energy landscapes (Fig. 3) can be
divided into four distinct regions: the folded region F (RA !2.3
Å and RB !2.6 Å), the denatured region D (RA "2.3 Å and RB
"2.6 Å), a major intermediate region I1 (RA "2.3 Å and RB !2.6
Å), and a minor intermediate region I2 (RA !2.3 Å and RB "2.6
Å). The lowest free energy in the F region centered at (RA # 1.1
Å, RB # 0.9 Å) was chosen as the reference point. The minimum
in the I1 region centered at (RA # 4.5 Å, RB # 1.5 Å) had

Fig. 1. The best folded structure (red) from REMD with 0.46 Å C"-rmsd (1.59
Å heavy-atom rmsd) compared with the x-ray crystal structure of HP35 (purple,
Protein Data Bank ID code 1YRF). Both terminal residues were excluded from
rmsd calculations. Fig. 2. The folding population landscapes of HP35 from REMD and CMD at

300 K, 340 K, and 360 K. The axes are the C"-rmsds of segments A and B.

Fig. 3. The folding free-energy landscape of HP35 at 300 K from REMD.
Representative structures of the four states are shown on the figure, including
the folded state (F), denatured state (D), major intermediate state (I1), and
minor intermediate state (I2).

4926 ! www.pnas.org"cgi"doi"10.1073"pnas.0608432104 Lei et al.

Lei,$H.,$Wu,$C.,$Liu,$H.$and$Duan,$Y.$Folding$freePenergy$
landscapeofvillin$headpiece$subdomain$from$molecular$
dynamics$simulaRons.$PNAS$104,$4925–4930$(2007).�

NMR$structure$(PDB$ID:$1YRF)�

segment$A�

segment$B�

20$replicas$were$used$for$Replica$Exchange$simulaRon.$
200nsfor$each$REMD$replica.$Sander$module$of$
AMBER8was$used�

Previous$work$by$Duan$et$al.�

System:$Villin$headpiece$(35$residues)$$
Size:$$582$atoms$(implicit$solvent)�

kcal/mol�Free$energy$surface�

12$μs$trajectory�

Simula(on$with$GPU$(GTX680):$Throughput$509ns/day�

Foldingofvillin$headpiece$(implicit$solvent)�

(CPU:$Throughput$=77ns/day)$�

GPU:24daysfor12$μs$long�
(CPU:156days)$�

Simula(on$with$GPU$(GTX680):$Throughput$=$25ns/day�

4$μs$trajectory�

System:$LAOPbinding$protein$(238$residues)$$
Size:$$40,978$atoms$including$TIP3P$watersandions�

FuncRonally$relevant$moRonof
LAOPbinding$protein$(explicit$solvent)�

(CPU:$Throughput$=4ns/day)$�

GPU:156daysfor4$μs$long�
(CPU:957days)$�

FuncRonally$relevant$moRonof
LAOPbinding$protein$(explicit$solvent)�

open�

Intermediate�
closed�

�şƀĂ¶$Simula(on$with$GPU� Previous$workbySilvaetal.�

while the average timescale for transitioning from the unbound
states to the bound state is 0.258 6 0.045 ms. The average
timescale for transitioning from the encounter complex state to the
bound state is 0.09060.015 ms (see Methods for calculation
details). Thus, the unbound protein will typically transition to the
encounter complex before reaching the bound state.

The top ten paths from the unbound states to the encounter
complex can be divided into two sets, one that is best described by
conformational selection and one that is better described by the
induced fit mechanism. For example, the pathway from state 45
directly to 11 operates through conformational selection (see green
arrow in Fig. 4): in the unbound state 45 the protein and ligand are
not interacting but the protein conformations are very similar to
those in the encounter complex. Since the protein adopts similar
conformations in these two states, the ligand can always bind to a
pre-existing encounter-complex-like (state 11 like) protein confor-
mation (the conformational selection mechanism). The binding
kinetics of this conformational selection pathway is quite rapid,
having a mean first passage time for transitioning from the
unbound state 45 to the encounter complex state 11 of
0.22060.054 ms, and this pathway accounts for ,45% of the flux
of the top ten pathways from unbound states to the bound state.

The second group of pathways to the encounter complex, which
together account for ,55% of the flux may be better described by
the induced fit mechanism. In general, these pathways start off in
conformations that are much more open or twisted than the
encounter complex. Next, the system transitions to one or more
intermediate states where the ligand is interacting with the protein
at (or near) its binding site, though the protein is still quite open or
twisted. Finally, the protein-ligand interactions induce a transition
to the encounter complex state. For example, the pathway starting
from state 47, passing through state 14, and ending at state 11 falls
into this category (see Fig. 4).

Transitions from the encounter complex to the bound state are
best described by the induced fit mechanism. When the system
enters the encounter complex state, the protein is generally in a
relatively open conformation (opening angle within 20u to 70u, see
Fig. 6). However, when the system leaves the encounter complex
state to enter the bound state, the protein is mostly in a more closed
conformation (opening angle smaller than 30u, see Fig. 6). Thus, it
appears interactions with the ligand induce the protein to close.
Furthermore, our model predicts that the encounter complex-to-
bound transition (0.09060.015 ms) is much faster than the
encounter complex-to-unbound transition (1.92760.499 ms), so

Figure 3. Superposition of the 10 highest flux pathways from the unbound states to the bound state. The flux was calculated using a
greedy backtracking algorithm [31,66] applied to a 54-state MSM generated with the SHC algorithm [30]. These pathways account for 35% of the
total flux from unbound states to the bound state. The arrow sizes are proportional to the interstate flux. State numbers and their equilibrium
population calculated from MSM are also shown. The conformational selection and induced pathways from the unbound states to the encounter
complex state is shown in green and grey arrows respectively.
doi:10.1371/journal.pcbi.1002054.g003

Flexible Ligand Binding

PLoS Computational Biology | www.ploscompbiol.org 4 May 2011 | Volume 7 | Issue 5 | e1002054

Intermediate� closed�

open�

Silva,$D.PA.,$Bowman,$G.$R.,$SosaPPeinado,$A.andHuang,$X.$“A$Role$for$Both$
ConformaRonal$SelecRon$and$Induced$FitinLigand$Binding$bytheLAO$
Protein.”$PLoS%Comput.%Biol.%7,$e1002054$(2011).�

64$molecular$dynamics$simulaRons,$each200ns$long.$
GROMACS$4.0.5$was$used.�

GPUſƌƏƵǎƩƘƠƵǏĝµ�

GPUǕnâğøÀǕv`ƪƼƤǔƀç\$
ſƌƏ¨ĳƀƨǆǋǑǖƨǍǔƀ&N�

How Fast-Folding Proteins Fold
Kresten Lindorff-Larsen,1*† Stefano Piana,1*† Ron O. Dror,1 David E. Shaw1,2†

An outstanding challenge in the field of molecular biology has been to understand the process
by which proteins fold into their characteristic three-dimensional structures. Here, we report the
results of atomic-level molecular dynamics simulations, over periods ranging between 100 ms
and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse
proteins. In simulations conducted with a single physics-based energy function, the proteins,
representing all three major structural classes, spontaneously and repeatedly fold to their
experimentally determined native structures. Early in the folding process, the protein backbone
adopts a nativelike topology while certain secondary structure elements and a small number of
nonlocal contacts form. In most cases, folding follows a single dominant route in which elements
of the native structure appear in an order highly correlated with their propensity to form in the
unfolded state.

Protein folding is a process of molecular
self-assembly during which a disordered
polypeptide chain collapses to form a com-

pact and well-defined three-dimensional struc-
ture. Hundreds of studies have been devoted to
understanding the mechanisms underlying this
process, but experimentally characterizing the
full folding pathway for even a single protein—
let alone for many proteins differing in size,
topology, and stability—has proven extremely
difficult. Similarly, simulating the folding of a
small protein at an atomic level of detail is a
daunting task. Both experimental and compu-
tational studies have thus generally focused on
one protein at a time, with such studies each
performed under different conditions or with
different techniques. Possibly because of the
resulting heterogeneity of the available data,
numerous theories have been proposed to de-
scribe protein folding and no consensus has
been reached on which of these theories, if any,
is correct (1).

Our research group has developed a special-
ized supercomputer, called Anton, which greatly
accelerates the execution of atomistic molecular
dynamics (MD) simulations (2, 3). In addition,
we recently modified the CHARMM force field
in an effort to make it more easily transferable
among different protein classes (4). Here, we have
combined these advances to study the folding
process of fast-folding proteins through equilib-
rium MD simulations (2). We studied 12 protein
domains (5) that range in size from 10 to 80 amino
acid residues, contain no disulfide bonds or pros-
thetic groups, and include members of all three
major structural classes (a-helical, b sheet and
mixed a/b). Of these 12 protein domains, 9 repre-
sent the nine folds considered in a review of fast-
folding proteins (6). Asmost of these nine proteins
contain only a helices, we also included two ad-

ditional a/b proteins and a stable b hairpin to
increase the structural diversity of the set of pro-
teins examined.

In our simulations, all of which used a single
force field (4) and included explicitly represented
solvent molecules, 11 of the 12 proteins folded
spontaneously to structures matching their exper-
imentally determined native structures to atomic

resolution (Fig. 1). The native state of the 12th
protein, the Engrailed homeodomain, proved
unstable in simulation. We were, however, able
to fold a different homeodomain (7) with the
same overall structure; the results reported below
pertain to this variant, rather than the Engrailed
homeodomain.

For all 12 proteins that folded in simulation,
we were also able to perform simulations near
the melting temperature, at which both folding
and unfolding could be observed repeatedly in
a single, long equilibrium MD simulation. For
each of the 12 proteins, we performed between
one and four simulations, each between 100 ms
and 1 ms long, and observed a total of at least
10 folding and 10 unfolding events. In total, we
collected ~8 ms of simulation, containing more
than 400 folding or unfolding events. For 8 of
the 12 proteins, the most representative structure
of the folded state fell within 2 Å root mean
square deviation (RMSD) of the experimental
structure (Fig. 1). This is particularly notable
given that the RMSD calculations included the
flexible tail residues and that, in some cases,
there was no experimental structure available

1D. E. Shaw Research, New York, NY 10036, USA. 2Center
for Computational Biology and Bioinformatics, Columbia
University, New York, NY 10032, USA.

*These authors contributed equally to the manuscript.
†To whom correspondence should be addressed. E-mail:
david.shaw@DEShawResearch.com (D.E.S.); kresten.lindorff-
larsen@DEShawResearch.com (K.L.-L.); stefano.piana-
agostinetti@DEShawResearch.com (S.P.)

Fig. 1. Representative structures of the folded state observed in reversible folding simulations of 12
proteins. For each protein, we show the folded structure obtained from simulation (blue) superimposed on
the experimentally determined structure (red), along with the total simulation time, the PDB entry of the
experimental structure, the Ca-RMSD (over all residues) between the two structures, and the folding time
(obtained as the average lifetime in the unfolded state observed in the simulations). Each protein is
labeled with a commonly used name, although in several cases, we studied mutants of the parent se-
quence [amino acid sequences of the 12 proteins and simulation details are presented in (5)]. PDB entries
in italics indicate that the structure has not been determined for the simulated sequence and that, instead,
we compare it with the structure of the closest homolog in the PDB. The calculated structure was obtained
by clustering the simulations (26) to avoid bias toward the experimentally determined structure.

www.sciencemag.org SCIENCE VOL 334 28 OCTOBER 2011 517

REPORTS

MDnâğøÀśAnton@D.$E.$Shaw$Research�

@RIKEN$AICS$64�ƤƔ$(ÁǁǖƩŻĦ¤)�

Folding$simulaRons$by$Anton�

LindorffPLarsen,$K.,$Piana,$S.,$Dror,$R.$O.$Shaw,$D.$E.$$
“How$FastPFolding$Proteins$Fold.”$Science$334,$517$(2011).�

ň¥ŊǕĄĆèžƨǆǋǑǖƨǍǔŨJĊſžŷźũźţƏŞ$
ųƐżżƊſƨǆǋǑǖƨǍǔ�ƀƴǖƮĝµǕƴǖƮǅƖƸǔơƀÅŃŨ`ũŪžƎƁůƉźţƏ�

�ĦŘ?ſƌƏíõ$→$ƴǖƮŘ?ſƌƏíõ�
©¬lĢý@BłǎƖƾƦƖƙǔƪƬǆƷǖ�

`ę¾ƴǖƮƀ�1:$_9�1ƵǎǔƪǄǖƮǖAcrBƀē9�1Ļó�

`ę¾ƴǖƮƀ�2:$ùcƾƕǐƮſƌƏ12cFRETƴǖƮM@�

Sisamakis,$E.,$Valeri,$A.,$Kalinin,$S.,$Rothwell,$P.$J.$&$
Seidel,$C.$A.$M.$Meth.%Enzymol.$475,$455–514$(2010).�

AcceptorDonor

S1
D

S0
D

k0
D

S1
A

k0
A

S0
A

k01
D

A

B

E

0

1
D

C

N
or

m
.
va

lu
es

400 700600500
Wavelength (nm)

0 R0,1 R0,2 100

Interdye distance (Å)

Abs. A594
Fl. A594

Abs. A488
Fl. A488

kFRET

Figure 18.2 Basic essentials in FRET theory. (A) Schematic representation of a
biomolecule labeled with donor (D—green sphere) and acceptor (A—red sphere).
When the interdye distance is large, only fluorescence signal from D is observed
(shown in green while excitation is shown in blue). When an acceptor molecule (A)
resides in the vicinity of D, energy transfer takes place. In this case fluorescence signals
both from D (dim green) and A (red) will be recorded. The signal of D will be lower

462 Evangelos Sisamakis et al.

donor�

acceptor�

acceptor�
donor�laser%pulse�

photon%
emission�

photon%
emission�

FRETğÒǗ2cſ2"ƀďÿ2cƒŸūźŝĔ*-Śƙƹǐ
Ɵǖò?>Þ(FRET)ƒğÒŰƏŬżŻŝďÿ2cŊƀĮŒƒ
ğÒŰƏ¡Í�

ùcƾƕǐƮǗĶÁèſǀƖƫǉƴǐ(�ťƂ12cFRETƴǖƮƀ
ƌŤž�Á)�[ƒ±�żŰƏŐƐŴ¼Ĺ^�ƀ��2z)ƒ
�gŰƏĶÁǉǔƳƜǐǒÍƀƔǐƥǏƫǇƀƃżŸŞ$

1��10�"ƀúĚ@ƮǔƼƠĬǉƴǐƒ�ŷźù
cƾƕǐƮƀğø�$

ùcƾƕǐƮƀƳƪƵğøƀ�$

�����

実験データを元にコ
ピーを取捨選択する

時間

1分子FRET実験で観測される
ドナー・アクセプター間距離

時間

配位6J 多数のコピーを
使って、実験デー
タを説明する複数
のパスを重みで表
現する

�N����
距離

�N���ZTedi[lRcwy�0avsVk#
*F����mz�����y-pv&.#

A. Doucet, N. De Freitas, N. Gordon, "Sequential Monte Carlo
methods in practice", Springer Verlag (2001).

MATALBſƌƏƵǎƩƘƠƵǏĝµ�
MATLABſƌƏƨǆǋǑǖƨǍǔƀƵǎƩƘƠƵǏĝµ$
•  řǑǀǐĞĥžƀŻ½şžƔǐƥǏƫǇſÇİſưǊǑǔƩŻũƏ$
•  MuRPthread@ŭƐŴŋ�Ũ_ŪŢƏ$
•  ăğŋĺƀŋ�ŨĪj$
•  I/OƋ¼ĹĝµƲǖǐ(ƾƕƱƳƕǔơžŽ)ŧƍžƏZ®ƾǑǖǇǓǖƠƒ�%Ðƈ$

MDToolbox:$$hnps://github.com/ymatsunaga/mdtoolbox$

MATLABſCUDAƿǒơǎǆǔơ$
ƛƿƨǍǔŻ��ŭƐƏ$Parallel$CompuRng$Toolbox$ƒ�â$

% ĕ3ƒ��
>> A1 = rand(3000, 3000);

% GPUƄĴ
>> A2 = gpuArray(A1);

% fftƒGPU�Żhĕ (č?èſCUDAƀfftŨQƂƐƏ)
>> B2 = fft(A2);

% GPUŧƍǈƖǔǈǉǏƄTF
>> B2 = gather(B2); �

Host�

GPU�

GPUƄĴ $
gpuArray�

GPUŧƍTF$
gather�

hnp://www.mathworks.co.jp/discovery/matlabPgpu.html$
hnp://tsubame.gsic.Rtech.ac.jp/docs/guides/isvPapps/MATLAB/html/matlab4.html$
$
�

���

ďĤĕĈªïÁ,´�ï¦lvëÞéÅ�î�ÓüÿéÓ
þ�X�¦lðÐ�CïøïV2î1èÓéÁ,Joā
u;ÞéÖýÐSàÞú´�V2ë¾²ØíÓÑ�

→ ďĤĕĈªï´�V2ā��ÞéÁ,Joā%;ßþ
ăġĊĠčĜā_mßþ�

() ()()[]0,,diag 31 ≥= ffCovUU N
T λλ …

2/20

Parallel$CompuRng$ToolboxſƌƏĝµƀřĸ@�
��2ĝµ(PCA)� Weighted$Histogram$Analysis$Method$(WHAM)�

řÁ)ƴǖƮƒ�Á)ſąþŰƏ�Íƀ�Ÿ$
1.  ƵǎƩƘƠƵǏŧƍ-2�ĕ3ƀğø$
2.  -2�ĕ3ƀmĜ@$

±�ƀåžƏÝ÷ŮŴƨǆǋǑǖƨǍǔƀƵǎƩƘƠ
ƵǏƒƇżƉź�ŷźăğŅƒğøŰƏŏƀŃƈ
ƒģ�ŰƏ¡Í$
1.  ƙƹǐƟǖöŊžŽŻƽƪƵơǎǇƒ��$
2.  ƽƪƵơǎǇŧƍWHAM¡ó�ƒčxØ�ì
ſĝŪ$

uncertainty of the unbiased probability distribution given the
umbrella histograms, and subsequently to compute the PMF
that corresponds to the smallest uncertainty. For a derivation
of the equations, we refer to the original publication by
Kumar et al.3 An excellent (and less technical) review on
umbrella simulations and the WHAM procedure has been
presented by Roux.5 The WHAM equations read3

and

Here, ! denotes the inverse temperature 1/kBT, with the
Boltzmann constant kB and the temperature T, and nj is the
total number of data points in histogram hj. The statistical
inefficiency gi is given by gi) 1 + 2τi, with the integrated
autocorrelation time τi of umbrella window i (in units of the
simulation frame time step.) Note that the gi’s cancel from
the WHAM equations if (and only if) the autocorrelation
times in all umbrella windows equal. In contrast, if the gi’s
differ between different histograms, the factors gi

-1 assign
lower weights to histograms with longer autocorrelations.
P(#) denotes the unbiased probability distribution that is
related to the PMF via W (#)) -!-1 ln[P(#)/P(#0)]. Here,
#0 is an arbitrary reference point where the PMF W (#0) is
defined to zero. The WHAM equations contain two unknown
quantities, that is, the free energy constants fj and the
unbiased distribution P(#), and must therefore be solved
iteratively. Depending on the number of histograms and the
height of the barriers in the PMF, the WHAM equations
typically converge within tens of iterations and up to tens
of thousands of iterations.

Alternative approaches to derive the PMF and the uncer-
tainty from a set of umbrella simulations have been
proposed,6-8 as well as several extensions to the umbrella
sampling technique.9,10

Despite the fact that WHAM has been widely used to
derive PMFs from biomolecular simulations, a standard
protocol to compute the statistical errors for the derived PMF
has not yet evolved. Therefore, we here present a new
WHAM implementation, termed g_wham, that allows one
to compute robust error estimates using different bootstrap
techniques. We apply the techniques on two test systems to
demonstrate the potential and the limitations of the bootstrap
methods. Besides the ability to estimate the statistical error,
g_wham supports a number of features that are expected to
be useful to the community. To compute PMFs along
periodic reaction coordinates such as dihedral angles or
coordinates in a simulation box with periodic boundary
conditions, a periodic WHAM is implemented. Nonharmonic
umbrella potentials can be provided as tabulated potentials.
g_wham allows for the estimatation of autocorrelation times
and the incorporation of these into WHAM. As shown in

the Results, this procedure may yield more realistic PMF
estimates in the presence of long autocorrelations.

The software is freely distributed with the GROMACS
simulation suite.11 If the umbrella simulations were carried
out using the GROMACS pull options, g_wham conveniently
reads the GROMACS output files. In the case of more
complex reaction coordinates, or if the simulations were not
carried out using GROMACS, the user may provide g_wham
input files in text format. A detailed description of g_wham,
including all options, is provided in the Appendix and is
available with the command line g_wham -h.

Methods

Error Estimates from Bootstrap Analysis. g_wham
estimates the statistical uncertainty of the PMF using
bootstrap analysis.12 Bootstrapping is a resampling technique
that can be applied to estimate the uncertainty of a quantity
A(a1, ..., an) which is computed from a large set of n
observations al (l) 1, ..., n). To calculate the uncertainty in
A, one could redo the n observations multiple times, yielding
several independent estimates for A and hence the uncertainty
in A. That procedure would require many more observations
and is therefore often not tractable.

The observations al are typically drawn from an unknown
underlying probability distribution P(a). The idea of boot-
strapping is to estimate P(a) using the n observations and
subsequently generate new random sets of n hypothetical
observations, based on the estimated distribution. Each of
the sets of n hypothetical observations is used to calculate a
hypothetical value for A. The uncertainty in A is then given
by the standard deviation of the hypothetical values for A.
For a detailed introduction into the bootstrap technique, we
refer to the monograph by Chernick.13

Bootstrapping Trajectories Based on Umbrella His-
tograms. The WHAM procedure computes the PMF based
on the Nw trajectories #i(t) along the reaction coordinate, each
taken from one of the umbrella windows (i) 1, ..., Nw). All
positions #i during the Nw simulations may thus be considered
as the large set of observations, which we referred to as al

in the previous paragraph.14 Alternatively, complete umbrella
histograms may be considered as the individual observations
(see next section).15 Note that the probability distributions
of #i are already available as the umbrella histograms. Thus,
we can generate new hypothetical observations, that is, a
“bootstrapped” trajectory #b,i(t) for each umbrella histogram
hi(#), such that #b,i(t) is distributed according to the respective
histogram. Each bootstrapped trajectory #b,i(t) yields a new
histogram hb,i(#). The new set of Nw histograms hb,i is
subsequently applied in WHAM to compute a bootstrapped
PMF Wb(#). The whole procedure is repeated Nb times (e.g.,
Nb) 200), yielding a large set of Nb bootstrapped PMFs
W b,k(#) (k) 1, ..., Nb). The uncertainty of the PMF is then
given by the standard deviation as calculated by the Nb

bootstrapped PMFs, that is via

P(#))
∑
i)1

Nw

gi
-1hi(#)

∑
j)1

Nw

njgj
-1 exp[-!(wj(#) - fj)]

(2)

exp(-!fj)) ∫ d# exp[-!wj(#)] P(#) (3)

σPMF(#)) [(Nb - 1)-1 ∑
k)1

Nb

(Wb,k(#) - 〈Wb(#)〉)2]1/2 (4)

3714 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Hub et al.

uncertainty of the unbiased probability distribution given the
umbrella histograms, and subsequently to compute the PMF
that corresponds to the smallest uncertainty. For a derivation
of the equations, we refer to the original publication by
Kumar et al.3 An excellent (and less technical) review on
umbrella simulations and the WHAM procedure has been
presented by Roux.5 The WHAM equations read3

and

Here, ! denotes the inverse temperature 1/kBT, with the
Boltzmann constant kB and the temperature T, and nj is the
total number of data points in histogram hj. The statistical
inefficiency gi is given by gi) 1 + 2τi, with the integrated
autocorrelation time τi of umbrella window i (in units of the
simulation frame time step.) Note that the gi’s cancel from
the WHAM equations if (and only if) the autocorrelation
times in all umbrella windows equal. In contrast, if the gi’s
differ between different histograms, the factors gi

-1 assign
lower weights to histograms with longer autocorrelations.
P(#) denotes the unbiased probability distribution that is
related to the PMF via W (#)) -!-1 ln[P(#)/P(#0)]. Here,
#0 is an arbitrary reference point where the PMF W (#0) is
defined to zero. The WHAM equations contain two unknown
quantities, that is, the free energy constants fj and the
unbiased distribution P(#), and must therefore be solved
iteratively. Depending on the number of histograms and the
height of the barriers in the PMF, the WHAM equations
typically converge within tens of iterations and up to tens
of thousands of iterations.

Alternative approaches to derive the PMF and the uncer-
tainty from a set of umbrella simulations have been
proposed,6-8 as well as several extensions to the umbrella
sampling technique.9,10

Despite the fact that WHAM has been widely used to
derive PMFs from biomolecular simulations, a standard
protocol to compute the statistical errors for the derived PMF
has not yet evolved. Therefore, we here present a new
WHAM implementation, termed g_wham, that allows one
to compute robust error estimates using different bootstrap
techniques. We apply the techniques on two test systems to
demonstrate the potential and the limitations of the bootstrap
methods. Besides the ability to estimate the statistical error,
g_wham supports a number of features that are expected to
be useful to the community. To compute PMFs along
periodic reaction coordinates such as dihedral angles or
coordinates in a simulation box with periodic boundary
conditions, a periodic WHAM is implemented. Nonharmonic
umbrella potentials can be provided as tabulated potentials.
g_wham allows for the estimatation of autocorrelation times
and the incorporation of these into WHAM. As shown in

the Results, this procedure may yield more realistic PMF
estimates in the presence of long autocorrelations.

The software is freely distributed with the GROMACS
simulation suite.11 If the umbrella simulations were carried
out using the GROMACS pull options, g_wham conveniently
reads the GROMACS output files. In the case of more
complex reaction coordinates, or if the simulations were not
carried out using GROMACS, the user may provide g_wham
input files in text format. A detailed description of g_wham,
including all options, is provided in the Appendix and is
available with the command line g_wham -h.

Methods

Error Estimates from Bootstrap Analysis. g_wham
estimates the statistical uncertainty of the PMF using
bootstrap analysis.12 Bootstrapping is a resampling technique
that can be applied to estimate the uncertainty of a quantity
A(a1, ..., an) which is computed from a large set of n
observations al (l) 1, ..., n). To calculate the uncertainty in
A, one could redo the n observations multiple times, yielding
several independent estimates for A and hence the uncertainty
in A. That procedure would require many more observations
and is therefore often not tractable.

The observations al are typically drawn from an unknown
underlying probability distribution P(a). The idea of boot-
strapping is to estimate P(a) using the n observations and
subsequently generate new random sets of n hypothetical
observations, based on the estimated distribution. Each of
the sets of n hypothetical observations is used to calculate a
hypothetical value for A. The uncertainty in A is then given
by the standard deviation of the hypothetical values for A.
For a detailed introduction into the bootstrap technique, we
refer to the monograph by Chernick.13

Bootstrapping Trajectories Based on Umbrella His-
tograms. The WHAM procedure computes the PMF based
on the Nw trajectories #i(t) along the reaction coordinate, each
taken from one of the umbrella windows (i) 1, ..., Nw). All
positions #i during the Nw simulations may thus be considered
as the large set of observations, which we referred to as al

in the previous paragraph.14 Alternatively, complete umbrella
histograms may be considered as the individual observations
(see next section).15 Note that the probability distributions
of #i are already available as the umbrella histograms. Thus,
we can generate new hypothetical observations, that is, a
“bootstrapped” trajectory #b,i(t) for each umbrella histogram
hi(#), such that #b,i(t) is distributed according to the respective
histogram. Each bootstrapped trajectory #b,i(t) yields a new
histogram hb,i(#). The new set of Nw histograms hb,i is
subsequently applied in WHAM to compute a bootstrapped
PMF Wb(#). The whole procedure is repeated Nb times (e.g.,
Nb) 200), yielding a large set of Nb bootstrapped PMFs
W b,k(#) (k) 1, ..., Nb). The uncertainty of the PMF is then
given by the standard deviation as calculated by the Nb

bootstrapped PMFs, that is via

P(#))
∑
i)1

Nw

gi
-1hi(#)

∑
j)1

Nw

njgj
-1 exp[-!(wj(#) - fj)]

(2)

exp(-!fj)) ∫ d# exp[-!wj(#)] P(#) (3)

σPMF(#)) [(Nb - 1)-1 ∑
k)1

Nb

(Wb,k(#) - 〈Wb(#)〉)2]1/2 (4)

3714 J. Chem. Theory Comput., Vol. 6, No. 12, 2010 Hub et al.

wham¡ó��

WHAM:$Kumar,$S.,$Bouzida,$D.,$Swendsen,$R.$H.,$Kollman,$P.$A.$
and$Rosenberg,$J.$M.,$J%Comput%Chem$13,$1011–1021$(1992).�

0$ 0.5$ 1$ 1.5$ 2$ 2.5$

CPU$

GPU$

speedup�

0$ 0.5$ 1$ 1.5$

CPU$

GPU$

speedup�

10,000$snapshots,$300$atoms$ƀƵǎƩƘƠƵǏƒ�ŷŴ
ǀǔưǅǖƠ�

triPalanineƀumbrella$samplingƒ�ŷŴǀǔưǅǖƠ�

��ŝ�ǑǀǐĞĥƒ�ŷŴưǋǖƸǔơŨ�Ę�

ƇżƉ�

•  GPUſƌƎǅƖƠǒñ��ƀá�2cƨǆǋǑǖƨǍǔŨ£
{èſJĊſžŷźũźŦƎŝAMBERƒ�ŷŴ�ƒĀ�ŮŴ$

•  AMBERſŋŮźƁŝ���âíõƒķŮźû�ĒżŮŴŬż

ſƌƏ�ŔŨ§ſ»ġŭƐƏż�ƑƐƏ$

•  ƨǆǋǑǖƨǍǔƀĸ�N�Ƌ`ę¾@ſƌƎŝo²èſ
ƴǖƮǅƖƸǔơƀÅŃŨ`ũŪžƏż
�ŭƐƏŨŝĝµƊ

GPUŻ;ĸŻũƐƂà�è�

•  -MíõĈ$
¯ãªËưǖǇǏǖƯǖ$(àí$AICS,$ASI,$QBiC)$

•  ĩĲ$
àí$AICS$ùcüáÚÚàíõưǖǇǈǔƻǖ$

àíśQBiC$2cÀĊƨǆǋǑǖƨǍǔíõưǖǇǈǔƻǖ$

¬lĢýÆ$(¿Îy`)$$lãĵÆś(³`)$t¸=Æ$(¿Îy`)$$ÊIÓ.Æ$(¿Îy`)$$

DãŎ|Æ$(àí$AICS)$

àíś�[ZéƬǔƮǖś�ãŭƓśś»uŭƓ$

_9�1ƵǎǔǄǖƮǖAcrB:$HPCI$Š
šś�Ď6â$hp120027$

ùcƾƕǐƮſƌƏFRETƴǖƮM@:$AICSř�@ħ�·,$HPCI$Š
šśĐ��°ĉ�6â$hp120060$

ƵǎƩƘƠƵǏĝµƲǖǐ:$ðeíõīė<ņ(Đ�íõ(B))$24770159$

àíśZîðeÛ5íõR7�$

