<A NVIDIA

\..\..m\m.\uv\\n..“..“....._. k7

sibia

L R R N sy

I A i A Ad A O T

1Ceé
Developer Technology Group

M A Clark, NVIDIA

latt

™
™
o)
©
©
c
S
3
>
©
o]
N
o)
S
T

Outline >

Introduction to GPU Computing
® Lattice QCD
* QUDA: QCD on CUDA
* Supercomputing with QUDA

Tuesday, June 18, 13

<3
Collaborators and QUDA developers nVIDIA

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

» Rich Brower (Boston University)

= Justin Foley (University of Utah)

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jefferson Lab)

= Claudio Rebbi (Boston University)

» Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (Cyprus Institute -> FNAL)
* Frank Winter (The University of Edinburgh)

Tuesday, June 18, 13

MORE THAN JUST INNOVATIVE.
GAME-CHANGING.

EXPERIENCE THE GEFORCE® GTX 690.

I

Tuesday, June 18, 13

Why GPU Computing? <.

GFlops/sec GBytes/sec

Tesla 20-series

Tesla 20-series

Tesla 20-series

Westmere

Nehalem 3 GHz

Westmere
ehalem

ST 3 GHz
-#=Single Precision: NVIDIA GPU =®=Single Precision: x86 CPU -#=NVIDIA GPU =#=X86 CPU
=i Double Precision: NVIDIA GPU Double Precision: x86 CPU ECC off

Tuesday, June 18, 13

NVIDIA GPU Roadmap: <
Increasing Performance/Watt

16

. Maxwell
g 14 ¥
8 12
wn
(a1
S 10
L
> 8
o) Kepler
o .
£ ¥
g 4 .
3 Fermi

2 Tesla =

2008 2010 2012 2014

Tuesday, June 18, 13

Tesla K20 Family : World’s Fastest Accelerator <
>1TFlop Perf in under 225W dickene

Tesla K20X Tesla K20

Tesla K20X
CUDA Cores 2688 2496
anvon TESL A
= — Peak Double Precision 1.32 TF 1.17 TF
"_' _ # 8 Peak DGEMM 1.22 TF 1.10 TF
Double Precision FLOPS (DGEMM) NS Peak Slngle Precision 3.95TF 3.52TF
1.25 - : Peak SGEMM 2.90 TF 2.61TF
1
g] Memory Bandwidth 250 GB/s 208 GB/s
o
£ ARSI Memory size 6 GB 5 GB
0.25 A
0 | — . Total Board Power 235W 225W
Xeon E5-2690 Tesla M2090 Tesla K20X

Tuesday, June 18, 13

S

The Kepler Architecture nvipi.

* Kepler K20K

PCle I 8.0 GB/s per direction

— 2688 processing cores
— 3995 SP Gflops peak (665.5 fma)
— Effective SIMD width of 32 threads (warp)
* Deep memory hierarchy
— As we move away from registers
* Bandwidth decreases
* Latency increases

— Each level imposes a minimum arithmetic
intensity to achieve peak

* Limited on-chip memory
— 65,536 32-bit registers, 255 registers per thread

Core | | Core C C .
2 2 || — 48 KiB shared memory
Core . Core . _ 1 5 M-IB L2

Tuesday, June 18, 13

=

nvibDiA

. - ‘-'-‘
¥ ! L
"8 " : ¢ <
oy N y
R | e
. o

¢
-s’ ‘.

FLOOR | SCORE |ITEM| .
6 -9 0220700 20

HEDLTH | DMMO |
§ 8710077099 ,—]

Tuesday, June 18, 13

Stunning Graphics Realism Lush, Rich Worlds @2

nvibDiA

POWERED BY

-

NVIDIA.

Crysis © 2006 Crytek / Electronic Arts

Incredible Physics Effects Core of the Definitive Gaming Platform

Hellgate: London © 2005-2006 Flagship Studios, Inc. Licensed by NAMCO BANDAI Games America, Inc. Full Spectrum Warrior: Ten Hammers © 2006 Pandemic Studios, LLC. All rights reserved. © 2006 THQ Inc. All rights reserved.

Tuesday, June 18, 13

<@

nvibDiA

GPGPU Revolutionizes Computing

Latency Processor + Throughput processor

Low Latency or High Throughput? >

e
B — ——
100s of ALUs
= ———————————————————————

-
100s of ALUs
e

Optlmlzed for low-latency & Optimized for data-parallel,
access to cached data sets throughput computation

& Control logic for out-of-order @ Architecture tolerant of memory
and speculative execution latency

& More transistors dedicated to
computation

Tuesday, June 18, 13

=

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread
* GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor — High Throughput Processor Computation Thread/Warp

T, Processing

Waiting for data

Ready to be processed

CPU core — Low Latency Processor

T, BT,

__RE

8T [] Context switch

Tuesday, June 18, 13

Small Changes, Big Speed-up =

Application Code

— Rest of Sequential
Compute-Intensive Functions CPU Code

G P U Use GPU to Parallelize

CPU

| —

J

gl L

Tuesday, June 18, 13

=

nvinDiA
L
Medical Imaging Molecular Dynamics Video Transcoding Matlab Computing Astrophysics
U of Utah U of lllinois, Urbana Elemental Tech AccelerEyes RIKEN
47X 30X
Financial Simulation Linear Algebraﬁ 3D Ultrasound Quantum Chemistry Gene Sequencing
Oxford Universidad Jaime Techniscan U of lllinois, Urbana U of Maryland

Tuesday, June 18, 13

3 Ways to Accelerate Applications

>

nviDia

N\

[Applications
4 4 N\)
| | OpenACC Programming
Libraries Direct Languages
Irectives (C/C++, Fortran, Python. ...)
. . J 0 J
“Drop-in” Easily Accelerate Maximum
Acceleration Applications Performance

Tuesday, June 18, 13

GPU Accelerated Libraries N>
“Drop-in” Acceleration for your Applications

- d:-'.
— Rc.;" =

NVIDIA cuBLAS NVIDIA cuRAND - NVIDIA NPP

Uiy WolIrlk

Vector Signal GPU Accelerated Matrix Algebra on
Image Processing Linear Algebra GPU and Multicore NVIDIA cuFFT

ArrayFire P
< ._‘__-'/(_‘f
ROGUE WAVE n oo
ST C++ Templated
Parallel Algorithms

IMSL Library Sparse Linear Algebra J Building-block Algorithms

Tuesday, June 18, 13

http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list

OpenACC Directives S

nvinia
CPU GPU
Simple Compiler hints
Program myscience Compiler Parallelizes code
.. serial code ...
I$acc kernels
dok =1,n1 OpenACC
doi=tnz Hodlntt Works on many-core GPUs &
. Hin o
enddo t multicore CPUs

enddo
I$acc end kernels

End Program myscience

Your original
Fortran or C code

Tuesday, June 18, 13

GPU Programming Languages <3

nvinDia

Numerical analytics p> MATLAB, Mathematica, LabVIEW
Fortran p> OpenACC, CUDA Fortran
Ch OpenACC, CUDA C
C++ p Thrust, CUDA C++
Python) PyCUDA, Copperhead

C# b GPU.NET

Tuesday, June 18, 13

3 CUDA C N>

Standard C Parallel C
ﬂ'l obal__ \
void saxpy(int n, float a, void saxpy(int n, float a,
float *x, float *y) float *x, float *y)
{ {
for (int i = 0; 1 < n; ++1) int i = blockIdx.x*blockDim.x + threadIdx.x;
y[i]l = a*x[i] + y[il; if (i < n) y[il = a*x[1] + y[i];
} }
int N = 1<<20; int N = 1<<20;

cudamemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements // Perform SAXPY on 1M elements
saxpy(N, 2.0, X, y); saxpy<<<4096,256>>>(N, 2.0, d_x, d_y);

\\\\‘¥ 4"/// \\\iiiaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);4‘////

http://developer.nvidia.com/cuda-toolkit

Tuesday, June 18, 13

Anatomy of a CUDA Application ©3

nviDia

Serial code executes in a Host (CPU) thread

code executes in many (GPU) threads
across multiple processing elements (GPU parallel functions are called Kernels)

CUDA Application
Serial code =——)

Host = CPU g

Device = GPU

e — R
Host = CPU

Serial code =—————) ?
Device = GPU

Tuesday, June 18, 13

Tuesday, June 18, 13

Structure within
the Atom

Quantum Chromodynamics

e The strong force is one of the basic forces of nature
(along with gravity, em and the weak force)

 It’s what binds together the quarks and gluons in the
proton and the neutron (as well as hundreds of other
particles seen in accelerator experiments) ELEMENTARY

PARTICLES

e QCD is the theory of the strong force

I\

e It’s a beautiful theory, lots of equations etc. 'g
Nl § ©

4 s EME o

. .but. oo — am g = L

Fermi National Accelerator Laboratorﬁ}wmm

Tuesday, June 18, 13

S

Lattice Quantum Chromodynamics nVIDIA

e Theory is highly non-linear = cannot solve directly

Must resort to numerical methods to make predictions

Lattice QCD

e Discretize spacetime = 4-d dimensional lattice of size Ly X L, X L-X L;
» Finitize spacetime = periodic boundary conditions

« PDEs = finite difference equations

High-precision tool that allows physicists to explore the contents of nucleus
from the comfort of their workstation (supercomputer)

Consumer of 10-20% of North American supercomputer cycles

Tuesday, June 18, 13

<3

Steps in a lattice QCD calculation nVIDIA

1. Generate an ensemble of gluon field (“gauge”)
configurations

Tuesday, June 18, 13

Produced in sequence, with hundreds needed per ensemble. This
requires > O(10 Tflops) sustained for several months (traditionally
Crays, Blue Genes, etc.)

50-90% of the runtime is in the linear solver

S

Steps in a lattice QCD calculation nVIDIA

2. “Analyze” the configurations
= (Can be farmed out, assuming O(1 Tflops) per job.

= 80-99% of the runtime is in the linear solver
Task parallelism means that clusters reign supreme here

D G,y DY () = nf (x)
or “Ax = b”

Tuesday, June 18, 13

ONILNAdWOD T37TvEHVYd INAILVAONAI]

IAY/

D. Weintroub

Tuesday, June 18, 13

<3

nvinDila

Tuesday, June 18, 13

©

™Sy 71M"! N

09 10 LI 09 1.0 LI
(quenched/experiment (n.=2+1)/experiment

Tuesday, June 18, 13

QCD applications

« Some examples

— MILC (FNAL, Indiana, Tuscon, Utah)
 strict C, MPI only

— CPS (Columbia, Brookhaven, Edinburgh)
* C++ (but no templates), MPI and partially threaded

— Chroma (Jefferson Laboratory, Edinburgh)

« C++ expression-template programming, MPI and threads
— BQCD (Berlin QCD)
* F90, MPI and threads
» Each application consists of 100K-1M lines of code

 Porting each application not directly tractable
— OpenACC possible for well-written code “Fortran-style” code (BQCD, maybe MILC)

Tuesday, June 18, 13

Tuesday, June 18, 1

<3
Enter QUDA e

e “QCD on CUDA” - http://lattice.github.com/quda

« Effort started at Boston University in 2008, now in wide use as the
GPU backend for BQCD, Chroma, CPS, MILC, etc.

e Provides:

— Various solvers for several discretizations, including multi-GPU support and
domain-decomposed (Schwarz) preconditioners

— Additional performance-critical routines needed for gauge field generation
* Maximize performance

— Exploit physical symmetries

— Mixed-precision methods

— Autotuning for high performance on all CUDA-capable architectures

— Cache blocking

Tuesday, June 18, 13

http://lattice.github.com/quda
http://lattice.github.com/quda

<3

QUDA is community driven nVIDIA

= Ron Babich (NVIDIA)

= Kip Barros (LANL)

» Rich Brower (Boston University)

= Justin Foley (University of Utah)

= Joel Giedt (Rensselaer Polytechnic Institute)
= Steve Gottlieb (Indiana University)

= Balint Joo (Jlab)

» Claudio Rebbi (Boston University)

» Guochun Shi (NCSA -> Google)

= Alexei Strelchenko (Cyprus Institute -> FNAL)
* Frank Winter (UoE -> Jlab)

Dslashes MDWF QDPQOP QUDA

QMP QLA
Message Passing Linear Algebra

Tuesday, June 18, 13

<X
QUDA Mission Statement VD12

* QUDA is
— a library enabling legacy applications to run on GPUs
— open source so anyone can join the fun
— evolving

* more features
 cleaner, easier to maintain
— a research tool into how to reach the exascale
* Lessons learned are mostly (platform) agnostic
» Domain-specific knowledge is key
* Free from the restrictions of DSLs, e.g., multigrid in QDP

Tuesday, June 18, 13

<3
USQCD software stack nVIDIA

Dslashes

QMP
Message Passing Linear Algebra Threading

(Many components developed under the DOE SciDAC program)

Tuesday, June 18, 13

Solving the Dirac Equation

e Solving the Dirac Equation is the most
time consuming operation in LQCD

° First-order PDE acting on a vector field

° On the lattice this becomes a large sparse matrix M
) Radius 1 finite-difference stencil acting on a 4-d grid
o Each grid point is a 12-component complex vector (spinor)

) Between each grid point lies a 3x3 complex matrix (link matrix € SU(3))

e Typically use Krylov solvers to solve M x = b

° Performance-critical kernel is the SpMV

e Stencil application:

° Load neighboring spinors, multiply by the inter-connecting link matrix, sum and store

Tuesday, June 18, 13

Wilson Matrix AVIDIA

Dirac spin projector matrices

(4x4 spin space) SU(3) QCD gauge field
l wfﬁ Space\
1A
Mo = =5 (P O UE e + P UL o) 4 (4)0
= —le o+ (4+m)dy o f
2 7 ’ m quark mass parameter

Nearest neighbor Local

Tuesday, June 18, 13

Wilson Matrix AVIDIA.

Dirac spin projector matrices

(4x4 spin space) SU(3) QCD gauge field
l wfﬂ Space\
Ly (P eULS P U 6 4
Mo =} S H UL s + PO U) + s
1 /
=——Dyo + 4 +m)dy
2 m quark mass parameter

Nearest neighbor Local

4d nearest-neighbor stencil operator acting on a vector field

Tuesday, June 18, 13

N

Mapping the Wilson Dslash to CUDA ke

e Assign a single space-time point to each thread

o V =XYZT threads
e V =244=>3,3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must
e Load the neighboring spinor (24 numbers x8)
e Load the color matrix connecting the sites (18 numbers x8)
e Do the computation

e Save the result (24 numbers)

e Arithmetic intensity
e 1320 floating point operations per site
e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity

Tuesday, June 18, 13

N

Mapping the Wilson Dslash to CUDA ke

e Assign a single space-time point to each thread

o V =XYZT threads
e V =244=>3,3x10° threads

e Fine-grained parallelization

e Looping over direction each thread must

e Load the neighboring spinor (24 numbers x8)
e Load the color matrix connecting the sites (18 numbers x8) Tesla K20X

e Do the computation

e Save the result (24 numbers)

e Arithmetic intensity

e 1320 floating point operations per site

e 1440 bytes per site (single precision)

e 0.92 naive arithmetic intensity

Tuesday, June 18, 13

Field Ordering > |

« CPU codes tend to favor Array of Structures but these behave badly on GPUs

Threads read I— 1:; read
non-contiguous data Iy 2 read

3" read
\/ ~

Spinor
(24 numbers)

e GPUs like Structure of Arrays

0123 0 "2 3

0123

AAAA
Threads read contiguous data
. QUDA interface deals with all data reordering
. Application remains ignorant

Tuesday, June 18, 13

N
Reducing Memory Traffic VDI

e SU(3) matrices are all unitary complex matrices with det = 1
e 12-number parameterization: reconstruct full matrix on the fly in registers

ai az as a1 az as
b1 b2 b3 b by bz J €= (axb)*
C1 C2 C3

o Additional 384 flops per site
e Also have an 8-number parameterization (requires sin/cos and sqrt)
e Impose similarity transforms to increase sparsity

e Still memory bound - Can further reduce memory traffic by truncating the precision
e Use 16-bit fixed-point representation
e No loss in precision with mixed-precision solver
e Almost a free lunch (small increase in iteration count)

Tuesday, June 18, 13

Kepler Wilson-Dslash Performance =

v—v¥ Half 8 GF
Half &8
A—A Half 12

Single 8 GF
B Single 8 K20X CG performance

@—@ Single 12 VA= 243XT
Wilson-Clover is £10%

GeForce GTX Titan
> 1 TFLOPS

N
al}
Q 500
[
5

32
Temporal Extent

Tuesday, June 18, 13

Krylov Solver Implementation

* Complete solver be on GPU
while (Jri/> €) {
e Transfer b to GPU (reorder) Bk = (ri,rk)/(r-1,re-1)
. k+1 = Ik - PPk
« Solve Mx=b conjugate P Pep

gradient o = (ri,rv)/(pr+1,Apk+1)
ri+1 = Ik - 0APk+1

)) Xk+1 = Xk T OPk+1
* Entire algorithms must run on GPUs Kk = k+1

e Transfer x to CPU (reorder)

* Time-critical kernel is the stencil application (SpMV)

* Also require BLAS level-1 type operations
e e.g., AXPY operations: b += ax, NORM operations: c = (b,b)

e Roll our own kernels for kernel fusion and custom precision

Tuesday, June 18, 13

Kepler Wilson-Solver Performance >

nviDiAa
<4—« Single-12 / Half-8-GF
A—A Single-12 / Half-8
Single-12 / Half-12
B—m Single-12 / Single-8 K20X performance

0@ Single-12 V = 243xT
Wilson-Clover is £10%
BiCGstab is -10%

70
[a)
S 400
(e
3

32
Temporal Extent

Tuesday, June 18, 13

<

NVIDIA.

Often require solver tolerance beyond limit of single precision

But single and half precision much faster than double

Use mixed precision
— e.g.defect-correction

while (|rx|> €) {

High precision ” rr = b - Axx
mat-vec and solve Apx = rx «__ Inpgr low
H precision solve

accumulate Xx+1 = Xk + Pk

QUDA uses Reliable Updates (Sleijpen and Van der Worst 1996)
Almost a free lunch

— Small increase in iteration count

Tuesday, June 18, 13

=
QUDA Performance - Chroma

24°x128 lattice, Chroma Single Prec Clover ° MO re recent resu lt

~146 cores

e Complete solver will
273.5 GFlops (per JLab GTX480 @ 4 GPUs) sustain up to 400
175 GFlops (per JLab Tesla C2050 @ 4 GPUs) GFLOPS on Kepl_er

e 10x speedup vs.
Sandy Bridge Xeon

2]
o
9]
p—
=
O
ge
Q
=
.
<
8
72
=
75}

3£ CG, 2x4 Barcelona@1.9GHz, DDR IB
O—© CQG, 2x4 Nehalem@2 .4GHz, QDR IB
4—¢ IBiCGStab, 2x4 Nehalem@2 .4 GHz, QDR 1B

32
#cores

Tuesday, June 18, 13

Tuesday, June 18, 13

The need for multiple GPUs >

* Only yesterday’s lattice volumes fit on a single GPU

* More cost effective to build multi-GPU nodes
e Better use of resources if parallelized

e Gauge generation requires strong scaling
e 10-100 TFLOPS sustained solver performance

Tuesday, June 18, 13

<3

Supercomputing means GPUs nviDIA

Tsubame 2.0, Tianhe,
Blue Waters, etc.

Tuesday, June 18, 13

<3
TITAN: World’s Fastest Supercomputer nvioi
18,688 Tesla K20X GPUs

27 Petaflops Peak, 17.59 Petaflops on Linpack

90% of Performance from GPUs

=

Tuesday, June 18, 13 ' ' - =

Multiple GPUs <,

e Many different mechanisms for controlling multiple GPUs
* MPI processes
e CPU threads
* Multiple GPU per thread and do explicit switching
e Combinations of the above

e QUDA uses the simplest: 1 GPU per MPI process

e Allows partitioning over node with multiple devices and
multiple nodes

® cudaSetDevice(local mpi_ rank);

Tuesday, June 18, 13

<

NVIDIA.

* CUDA provides the stream API for concurrent work queues
e Provides concurrent kernels and host<->device memcpys
e Kernels and memcpys are queued to a stream

* kernel<<<block, thread, shared, streamId>>>(arguments)

* cudaMemcpyAsync(dst, src, size, type, streamld)
 Each stream is an in-order execution queue

* Must synchronize device to ensure consistency between
streams

* cudaDeviceSynchronize()

* QUDA uses the stream API to overlap communication of the halo
region with computation on the interior

Tuesday, June 18, 13

1D Lattice decomposition AVIDIA.

1D decomposition Assign sub-lattice
(in ‘time’ direction) to GPU

/ face I/ | face \ face \ face

- ~_exchange ~exchange _exchange _exchange
wrap
o o o o o o o ~ around

Tuesday, June 18, 13

>

Multi-dimensional lattice decomposition nvioia

@y Lt Leod
- @ .

Qﬁ 2 Wl
-

Tuesday, June 18, 13

<

NVIDIA.

 Packing kernels
— Boundary faces are not contiguous memory buffers
— Need to pack data into contiguous buffers for communication
— One for each dimension
* Interior dslash
— Updates interior sites only
 Exterior dslash
— Does final update with halo region from neighbouring GPU
— One for each dimension

Tuesday, June 18, 13

Multi-dimensional Kernel Computation nvioa

]
]
O @ O 0.
---J' ------------ .L--- 2-d eXample
O : ®@ O @ O . @ * Checkerboard updating scheme employed, so
' ' only half of the sites are updated per application
|]
e : © @ O @ ' o — Green: source sites
]
O'®@ O @ O0'®e — Purple: sites to be updated
' ' — Orange: site update complete
@, 0 @ 0 @,0
R B) |
® O @ O,
]
1

Tuesday, June 18, 13

>

Multi-dimensional Kernel Computation nvioa

--- Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.

- --h--

!

Tuesday, June 18, 13

>

Multi-dimensional Kernel Computation nvioa

1 1
: :
S R —— T Step 1
. @ O @ : + Gather boundary sites into contiguous buffers to
' ' be shipped off to neighboring GPUs, one
O @ O 0! direction at a time.
1 1
'® O @ O«
0 @ 0 o!
4 >
L) L
1 !
1 L
1 1

Tuesday, June 18, 13

>

Multi-dimensional Kernel Computation nvioa

- Step 1

» Gather boundary sites into contiguous buffers to
be shipped off to neighboring GPUs, one
direction at a time.

e Y NN T L

Tuesday, June 18, 13

>

Multi-dimensional Kernel Computation nvioa

!
:
TET TS EEPPRE ST Step 1
. ® @ X + Gather boundary sites into contiguous buffers to
' ' be shipped off to neighboring GPUs, one
O @ O o direction at a time.
1 '
@ O @ O]
0 @ 0 o
4 Ld
1 '
1 '
1 '
L] '

Tuesday, June 18, 13

>

Multi-dimensional Kernel Computation nvioa

O

© ©@¢ 0 ©

Step 2

An “interior kernel” updates all local sites to the
extent possible. Sites along the boundary
receive contributions from local neighbors.

Tuesday, June 18, 13

Multi-dimensional Kernel Computation nvioa

seedennnnnansans Low- Step 3

0+® O @ 0:0
O : O @ O @ : O Boundary sites are updated by a series of kernels
: : - one per direction.
O+®@ O @@ 0'0
' ' A given boundary kernel must wait for its ghost
© : © @ O © : O zone to arrive

]
: ’ Note in higher dimensions corner sites have a
race condition - serialization of kernels required

Tuesday, June 18, 13

Multi-dimensional Kernel Computation nvioa

seedennnnnansans Low- Step 3

©0:'® O @ 0:0
O : O @@ O .4'. O Boundary sites are updated by a series of kernels
: : - one per direction.
0, O @ 0,0
]] . . .
A given boundary kernel must wait for its ghost
]
©,0 @ O .4’ © zone to arrive
- eEEEEEE------ |)
@ © 0 0.,
' ’ Note in higher dimensions corner sites have a

race condition - serialization of kernels required

Tuesday, June 18, 13

Multi-dimensional Kernel Computation nvioa

meedemeeee—.- bew- Step 3
©0:'® O @ 0:0
O : O @ O @ : O Boundary sites are updated by a series of kernels
: . - one per direction.
0, O @ 0,0
' o A given boundary kernel must wait for its ghost

@ @ 0 ©

]
'
]
'
]]
©.0 2 ' zone to arrive
LR R B B N
]
'
]
1]

Note in higher dimensions corner sites have a
race condition - serialization of kernels required

Tuesday, June 18, 13

Multi-dimensional Kernel Computation nvioa

]
'
1 © 0 0 0.
,‘ ----- ‘t Step 3
! O ©:0
O : O @ O @ : O Boundary sites are updated by a series of kernels
: : - one per direction.
0, O @ 0,0
' ' A given boundary kernel must wait for its ghost
© : © @ O © : O zone to arrive
- eEEEEEE------ |)
@ © 0 0.,
: : Note in higher dimensions corner sites have a

race condition - serialization of kernels required

Tuesday, June 18, 13

Multi-dimensional
Communications Pipeline

Total 9 cuda Streams exterior

kernels
Interiorkernel X Y Z T

—_—

0: kernels

GPU kernel
_ . cudaMemcpy
sync
7: T-backward _
5 THorvard i
=

gather kernel’

memcpy (host)

MPI send/recv

GPU idle

(] N BN B .

NVIDIA.

Tuesday, June 18, 13

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA @

128~ I | l l l l | l -
R R 1T ey NVIDIA.
64 - —_
R
16 I~
S
=
: L
8
S
2 2|~
S
'y
g I
05
(.25 H B—8 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBiCGStab solver
0.125 -
0.0625 = -
| |] | | | | | |
16 32 64 128 256 512 1024 2048 4096 8192

Results from TitanDev
- Clover propagator

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

Tuesday, June 18, 13

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA @

128~ l | | l l I | l -
ST TI00Tops T T T T T T T T T T s st NVIDIA.
64 - -
32
16 I~
S
=
: L
8
S
2 2~
S
oy
g 1
05
.25 H B—8 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
0.125 H % Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
0.0625 = -
| |] | | | | | |
16 32 64 128 256 512 1024 2048 4096 8192

Results from TitanDev
- Clover propagator

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

Tuesday, June 18, 13

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

(] S W N S, A D P DU
100 Tflops
64 - —_
32
16 I~
S
=
S 4
8
S
7 2
S
'y
s IF
05
(.25 H B—8 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
0.125 H % Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
0.0625 = -
| | | | | | | | |
16 32 64 128 256 512 1024 2048 4096 8192

Results from TitanDev
- Clover propagator

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

NVIDIA.

Tuesday, June 18, 13

Domain Decomposition

Non-overlapping blocks - simply have to
switch off inter-GPU communication

Preconditioner is a gross approximation

— Use an iterative solver to solve
each domain system

— Require only 10 iterations of
domain solver = 16-bit

— Need to use a flexible solver = GCR

Block-diagonal preconditoner impose A cutoff

Finer Blocks lose long-wavelength/low-energy modes
— keep wavelengths of ~ O(Aqco™?), Aaqcp '~ 1fm

Aniso clover: (as=0.125fm, a:=0.035fm) = 83x32 blocks are ideal
— 483x512 lattice: 83x32 blocks = 3456 GPUs

Tuesday, June 18, 13

Domain Decomposition

(Re)Start Generate Subspace

Apply Preconditioner:
reduced precision inner solve
Reduced Precision
Mv

Bikx = (2i, 2x)

Orthogonalize Z-s

Y = || 2k ||

normalize 2

repeat for all k or

Quantities with A are until residuum drops

in reduced precision

<3

nvinin

Update Solution

Solve for yi 1=kk-1,...,0:

Full precision restart
if not converged

Tuesday, June 18, 13

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

s Y T _ I __ 1T T ___T___T17
100 Tflops
64 - —
32
16 -
8=
=
: Lk
8
S
7 2=
S
=3
-~
s I
05
(.25 H B—8 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
0.125 H % Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
0.0625 = -
| | | | | | | | |
32 64 128 256 512 1024 2048 4096 8192

Results from TitanDev o

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

NVIDIA.

Tuesday, June 18, 13

128
64
32
16
8
~
2 .
§ 4
3 2
S
&
k= |
05
0.25
0.125
0.0625

Strong Scaling: 48°x512 Lattice (Weak Field), Chroma + QUDA

Results from TitanDev o

- 483x512 aniso clover
- scaling up 768 GPUs

Interlagos Sockets (16 core/socket)

- _1__ 1 T ___T___ e — - ___L___T7]
100 Tflops
— 7.5 Tflops =
L 38 Titan, XK6 nodes, CPU only: Single Precision Reliable-IBiCGStab Solver —
O—© Rosa, XE6 nodes, CPU only: Single Precision Reliable IBICGStab solver
H —¥ Titan, XK6 nodes, GPU only: Single Precision (single/single) Reliable BiCGStab solver —
O—© Titan, XK6 nodes, GPU only: Mixed Precision (half/single) Reliable BiCGStab solver
1 A—a Titan, XK6 nodes, GPU only: Mixed Precision (half/single) GCR solver with Domain -
Decomposed preconditioner
L ' | ' L ' L ' l
32 64 128 256 512 1024 2048 4096 8192

NVIDIA.

Tuesday, June 18, 13

Blue Waters, V=483x512, m =-0.0864, (attempt at physical m_)
q T

130000 i 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I j
120000 - -
110000 —A
o 100000 60— BiCGStab (GPU) 2304 socket job | 7]
S 90000 /‘ ©—6 BiCGStab (GPU) 1152 socket job | _
— .
& - / A—A GCR (GPU) 2304 socket job -
© 80000 |- / GCR (GPU) 1152 socket job -
2 70000 /A c—o B?CGStab (CPU) XK, 2304 sockets | _
= L 6—o BiCGStab (CPU) XE, 2304 sockets | -
E 60000 |- / —
@ L -
S 50000 |- A —
S B -
240000 [~ —
C,O) L -
30000 |- N © —
L o—=> 4
20000 - —
10000 [~ °_
[. N TR T RENRR T NPE T BN SRR NP
0 192 384 576 768 960 1152 1344 1536 1728 1920 2112 2304

number of sockets

<

NVIDIA.

Chroma + QUDA
Clover propagator

Nodes: 192-2304
FLOPS: 19x-7.66X
Solver: 11.5x-4.62x
Whole app: 7.33x-3.35x

Tuesday, June 18,

13

Blue Waters, V=483x512, m =-0.0864, (attempt at physical m_)
q T

130000 i 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I j
120000 - —
110000 —A
o 100000 60— BiCGStab (GPU) 2304 socket job | 7]
S 90000 /‘ ©—6 BiCGStab (GPU) 1152 socket job | _
— .
& - / A—A GCR (GPU) 2304 socket job -
© 80000 |- / GCR (GPU) 1152 socket job -
2 70000 /A c—o B%CGStab (CPU) XK, 2304 sockets | _
= L 6—o BiCGStab (CPU) XE, 2304 sockets | -
£ 60000 |- / —
@ L -
S 50000 |- A —
= B -
240000 [~ —
UO) L -
30000 N < —
L o—=> 4
20000 - —
10000 [~ °_
[. T I SN SRR SR T RTTN ST N
0 192 384 576 768 960 1152 1344 1536 1728 1920 2112 2304

number of sockets

NVIDIA.

Chroma + QUDA
Clover propagator

Nodes: 192-2304
FLOPS: 19x-7.66X
Solver: 11.5x-4.62x
Whole app: 7.33x-3.35x

with the addition
of QDP-JIT,
Chroma is ready

Tuesday, June 18,

13

”

MR T
Future Directions

Tuesday, June 18, 13

GPU Roadmap

32 sRiae
5. | Volta
| Stacked DRAM
16 s :
& | Maxwell
(’F | Unified Virtual Memory
i ,
= & | Kepler
= ™ | Dynamic Parallelism
O 4 ’
o
(Va)
(a — F c
S 2 & | Fermi
&5 | Fro4
(a8
()
1
0.5 & Tesla
= | cupa
2008 2010 2012 2014

Tuesday, June 18, 13

<3

M™NY71I N

Future Directions

* LQCD coverage (avoiding Amdahl)
— Remaining force terms needed for gauge generation
— Contractions
— Eigenvector solvers
* Solvers
— Adaptive Multigrid
— Scalability
* Performance

— Locality
— Learning from today’s lessons (software and hardware)

Tuesday, June 18, 13

Exploiting Locality

Wilson SP Dslash Performance with GPU generation

1500
Temporal localit
1125 i Y
°
@
£
o .
5 750 ™ Naive
» ™ Actual
Q Spatial locality
9O
O 375
0o ! . . . |
G80 GT200 Fermi Kepler Maxwell

illustrative illustrative

Tuesday, June 18, 13

<3
Future Directions - Locality

* Where locality does not exist, let’s create it
— E.g., Multi-source solvers
- Staggered Dslash performance, K20X

- Transform a memory-bound
into a cache-bound problem

- Entire solver will remain
bandwidth bound

GFLOPS
w .
S
<)

7 8 9 10 11 12
f sources

) i um S
Tuesday, June 18, 13

<3

Y7011 N

Future Directions - Communication

* Only scratched the surface of domain-
decomposition algorithms

— Disjoint additive

— Overlapping additive

— Alternating boundary conditions
— Random boundary conditions

— Multiplicative Schwarz

— Precision truncation

Tuesday, June 18, 13

Future Directions - Latency

* Global sums are bad
— Global synchronizations
— Performance fluctuations
e New algorithms are required
- S-step CG / BiCGstab, etc.
— E.g., Pipeline CG vs. Naive
* One-sided communication
— MPI-3 expands one-sided communications
— Cray Gemini has hardware support
— Asynchronous algorithms?
« Random Schwarz has exponential convergence

GFLOPS

Tuesday, June 18, 13

<3

M™NY71I N

Future Directions - Precision

* Mixed-precision methods have become de facto
— Mixed-precision Krylov solvers
— Low-precision preconditioners

» Exploit closer coupling of precision and algorithm
— Domain decomposition, Adaptive Multigrid
— Hierarchical-precision algorithms

— 128-bit <-> 64-bit <-> 32-bit <-> 16-bit <-> 8-bit
e Low precision is lossy compression
» Low-precision tolerance is fault tolerance

Tuesday, June 18, 13

mclark at nvidia dot com et

Summary

* Introduction to GPU Computing and LQCD computation
e Glimpse into the QUDA library
— Exploiting domain knowledge to achieve high performance
— Mixed-precision methods
— Communication reduction at the expense of computation
— Enables legacy QCD applications ready for accelerators
* GPU Supercomputing is here now
— Think parallel
— Algorithmic innovation may be required
— Lessons today are relevant for Exascale

Tuesday, June 18, 13

mailto:mclark@nvidia.com
mailto:mclark@nvidia.com

Where can | learn more? ﬂ_,__—_r--’— =

T CcuDpA

—— BY EXAMPLE

® You can learn more: .
® CUDA Programming Guide Paraliel Process SURCLEERE
® CUDA Zone - tools, training, webinars and more

http://developer.nvidia.com/cuda

® Increasing number of books available

WEN-MEI HWU
oeditor-in-chiof

Tuesday, June 18, 13

http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda

~\
_\
AN
N\
\
b
\\.
>
e EAN
- -
N =
2N
4/ \\
N\ 3
N

Backup slides Y

N\ /\

~

Tuesday, June 18, 1

>

Memory Coalescing NVIDIA.

 To achieve maximum bandwidth threads within a warp
must read from consecutive regions of memory

— Each thread can load 32-bit, 64-bit or 128-bit words
— CUDA provides built-in vector types

int2 int4
float float float2 float4
double double double?2
char char4
short short2 short4

Tuesday, June 18, 13

Domain Decomposition

(Re)Start Generate Update

° Non-overlapping blocks - simply have to
switch off inter-GPU communication

° Preconditioner is a gross approximation

° Use an iterative solver to solve each domain system

° Require only 10 iterations of domain solver = 16-bit
° Need to use a flexible solver = GCR

° Block-diagonal preconditoner impose A cutoff
° Finer Blocks lose long-wavelength/low-energy modes
e keep wavelengths of ~ O(Aqcp?), Aqco ' ~ 1fm
° Aniso clover: (as=0.125fm, at=0.035fm) = 83x32 blocks are ideal

° 483x512 lattice: 83x32 blocks = 3456 GPUs

Tuesday, June 18, 13

S

Run-time autotuning AVIDI 2

= Motivation:

— Kernel performance (but not output) strongly dependent on launch
parameters:

= gridDim (trading off with work per thread), blockDim
= blocks/SM (controlled by over-allocating shared memory)

= Design objectives:

— Tune launch parameters for all performance-critical kernels at run-
time as needed (on first launch).

— Cache optimal parameters in memory between launches.
— Optionally cache parameters to disk between runs.
— Preserve correctness.

Tuesday, June 18, 13

S

Auto-tuned “warp-throttling” nVIDIA

= Motivation: Increase reuse in limited L2 cache.

500
450
400
350
300
250
200
150
100
50
0 -

® BlockDim only
M BlockDim & Blocks/SM

GTX 580 | GTX 680 GTX 680 | GTX580 | GTX 680

Double

Tuesday, June 18, 13

GTX 580

S

Run-time autotuning: Implementation """

» Parameters stored in a global cache:
static std::map<TuneKey, > tunecache;

= TuneKey is a struct of strings specifying the kernel name,
lattice volume, etc.

is a struct specifying the tune blockDim, gridDim,
etc.

= Kernels get wrapped in a child class of Tunable (next slide)

= tuneLaunch() searches the cache and tunes if not found:

TuneParam tuneLaunch(Tunable &tunable, QudaTune enabled,
QudaVerbosity verbosity);

Tuesday, June 18, 13

S

Run-time autotuning: Usage nVIDIZ

= Before:
myKernelWrapper(a, b, c);

= After:
MyKernelWrapper *k = new MyKernelWrapper(a, b, c);

k->apply(); // <-- automatically tunes if necessary

* Here MyKernelWrapper inherits from Tunable and optionally
overloads various virtual member functions (next slide).

* Wrapping related kernels in a class hierarchy is often useful
anyway, independent of tuning.

Tuesday, June 18, 13

O
Virtual member functions of Tunable "™

* [nvoke the kernel (tuning if necessary):
— apply()
= Save and restore state before/after tuning:
— preTune(), postTune()
* Advance to next set of trial parameters in the tuning:
— advanceGridDim(), advanceBlockDim(), advanceSharedBytes()
— advanceTuneParam() // simply calls the above by default
* Performance reporting
— flops(), bytes(), perfString()
" etc.

Tuesday, June 18, 13

OpenACC execution Model >

nVvIDIA

* The OpenACC execution model has three levels:
gang, worker and vector

® This is supposed to map to an architecture that is a collection of
Processing Elements (PEs)

Each PE is multithreaded and each thread can execute vector instructions

® For GPUs one possible mapping could be gang=block,
worker=warp, vector=threads in a warp

* Depends on what the compiler thinks is the best mapping for the problem

Tuesday, June 18, 13

Mapping OpenACC to CUDA threads and blocks <

nVvIDIA

#pragma acc kernels
for(int i = 0; i < n; ++1) y[i] += a*x[i]; < 16 blocks, 256 threads each

#pragma acc kernels loop gang(100) vector(128)

forCint i = 0; 7 < n; ++1) y[i] += a*x[i]; 100 thread blocks, each with 128
4 threads, each thread executes one
iteration of the loop, using kernels

#pragma acc parallel num_gangs(100) vector_length(128)
{
#pragma acc loop gang vector

forCint 1 =05 1 <n; ++1) y[il += a*x[i]; } 100 thread blocks, each with 128

4 threads, each thread executes one
iteration of the loop, using parallel

Tuesday, June 18, 13

Mapping OpenACC to CUDA threads and blocks <

nVvIDIA

#pragma acc parallel num_gangs(100)]
100 thread blocks, each with

{
for(int i = 0; i < n; ++1) y[i] += a*x[i]l; } 4 apparently 1 thread, each thread
redundantly executes the loop

#pragma acc parallel num_gangs(100)
{
#pragma acc loop gang

compiler can notice that only 'gangs'
S AmE f o= 0 4 < nn =)yl = atxt]] < P y 9ang

are being created, so it might decide
to create threads instead, say 2
thread blocks of 50 threads.

Tuesday, June 18, 13

Mapping OpenACC to CUDA threads and blocks <2

nvibDiA

f |
#pragma acc kernels loop gang(100) vector(128) 100 thread blocks, each with 128

for(int i = 0; i < n; ++i) y[i] += a*x[i]; 4 threads, each thread executes one
iteration of the loop, using kernels

C)

#pragma acc kernels loop gang(50) vector(128) 50 thread blocks, each with 128
forC int 1 = 0; i < n; ++1) y[i] += a*x[i]; 4 threads. Each thread does two
elements worth of work

Tuesday, June 18, 13

Mapping multi dimensional blocks and >}
grids to OpenACC

® A nested for loop generates multidimensional blocks and grids

#pragma acc kernels loop gang(100), vector(16)

for(...)
#pragma acc loop gang(200), vector(32)

Tuesday, June 18, 13

