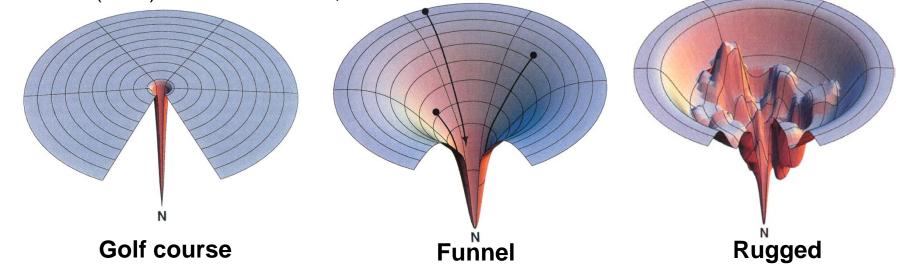

Kam Zhang, Ph.D. Zhang Initiative Research Unit Advanced Science Institute RIKEN

The Protein Folding Problem

Anfinsen's Folding Postulate: *The information needed to specify the complex three-dimensional structure of a protein is contained in its amino acid sequence.* – Anfinsen et al. (1961) *PNAS*, **47**, 1309-1314.

> Hydrophobic residues Hydrophilic residues

3


Protein Folding Energy Landscape

 Levinthal's Paradox: It's impossible to search the whole conformation space. The folding must be following a path, therefore under kinetic control and there must be intermediates. But the refolding experiment clearly indicates that the thermodynamic equilibrium has been reached. – Levinthal (1968) J. Chem. Phys., 65, 44-45.

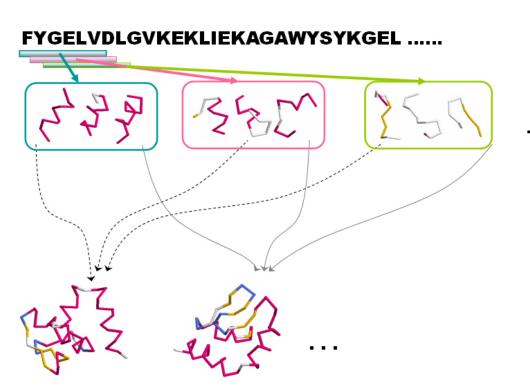
For example: a protein of 100 aa will take $\sim 10^{74}$ years to fold assuming 3 possibilities for each dihedral and picosecond sampling rate.

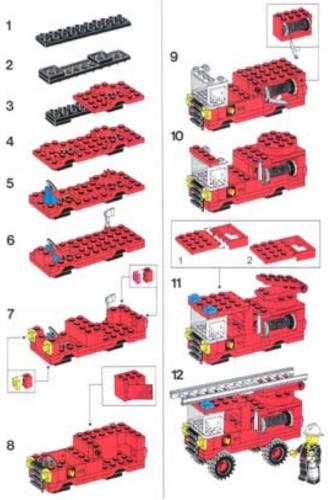
 $3^{198}/10^{12} \approx 10^{82} \text{ S} \approx 3 \times 10^{74} \text{ Y} >> 1.4 \times 10^{10} \text{ Y}$ (age of the universe)

Dill & Sun (1997) Nat. Struct. Biol. 4, 10-19.

- Energy function: Not accurate
 - Quantum mechanics (accurate but too slow)
 - Molecular mechanics (Newtonian)
 - Heuristic (fast but inaccurate)
- Conformational space: Astronomical

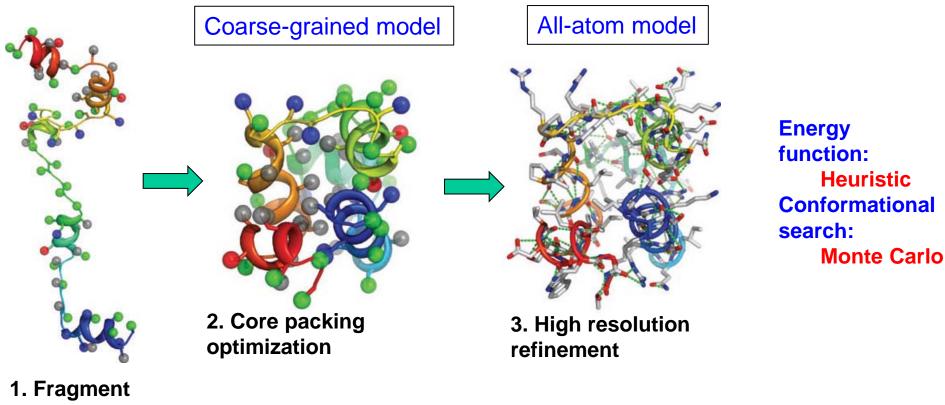
For a 100 aa protein, 99 peptide bonds, 198 $\phi \& \psi$ dihedrals, assume 3 possibilities for each dihedral, one FLOP on K-computer to evaluate each conformation, it will take:


 $3^{198}/10^{16} \approx 10^{78} \text{ S} \approx 3x10^{70} \text{ Y} >> 1.4x10^{10} \text{ Y}$ (age of the universe)


Fragment assembly approach to protein structure prediction

Bowie & Eisenberg (1994) PNAS, 91, 4436-4440.

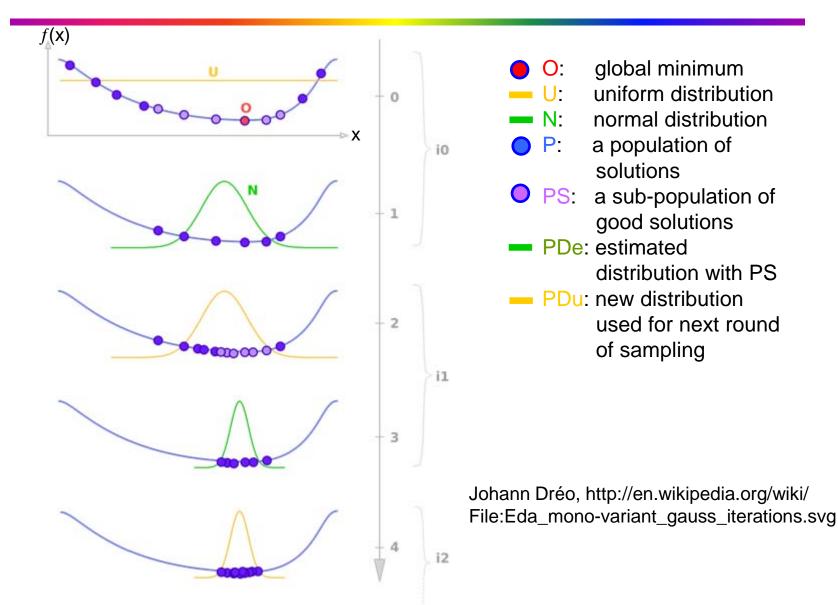
Simons, *etal*. & Baker (1997) *JMB*, **268**, 209-225. Kuhlman, *etal*. & Baker (2003) *Science*, **302**, 1364-1368.



5 http://www.bi.a.u-tokyo.ac.jp/~shugo/3d_prediction.html

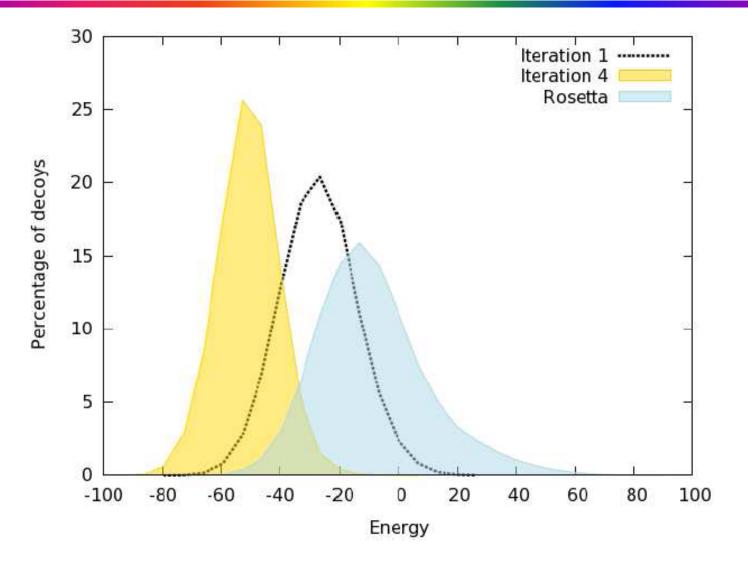
The Rosetta Structure Prediction Protocol

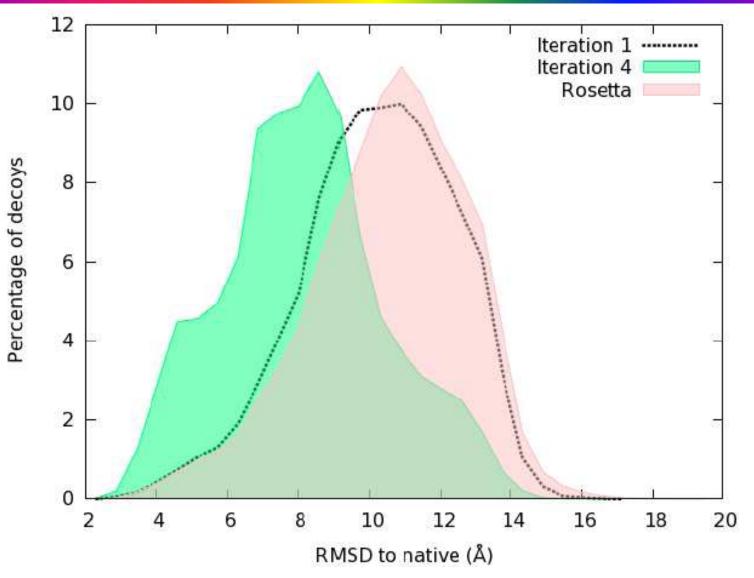
Das & Baker (2008) Ann Rev Biochem, 77, 363-382.


Assembly

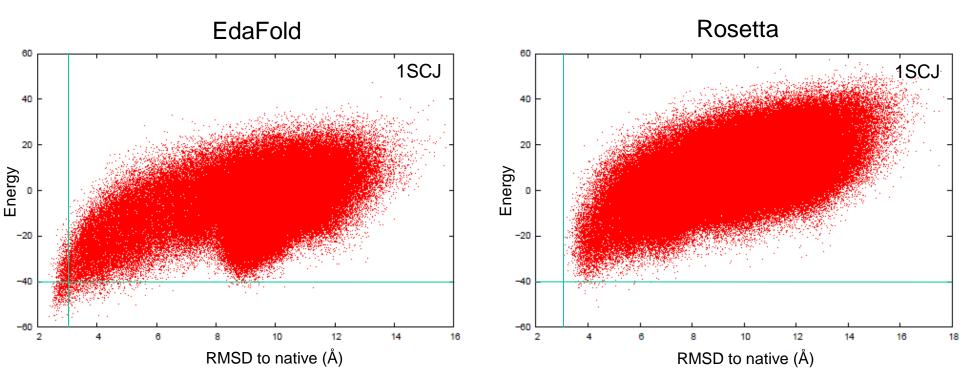
6

RIKEN

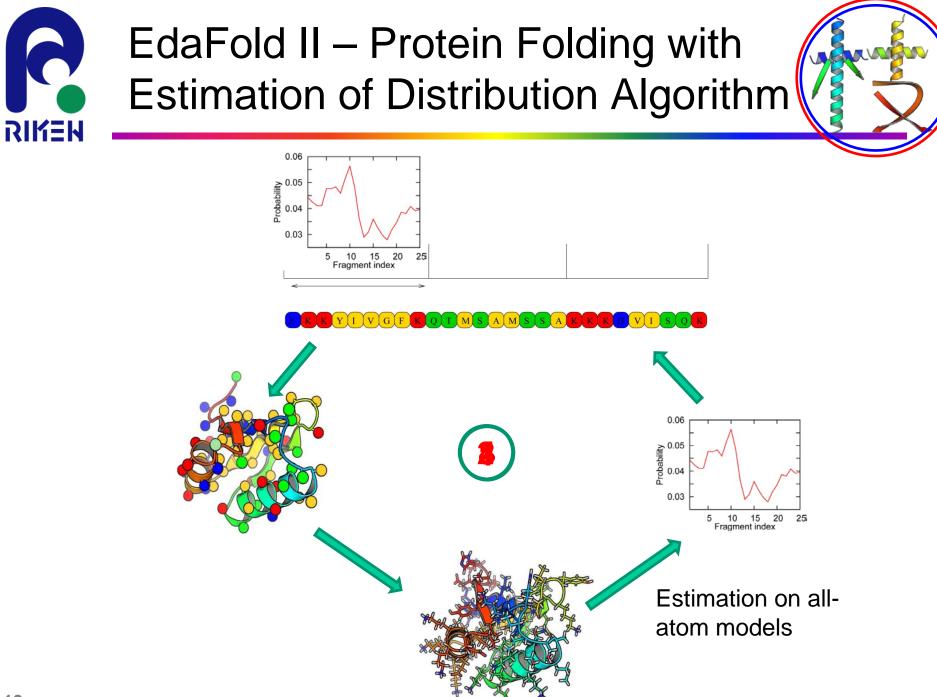

Estimation of Distribution Algorithm



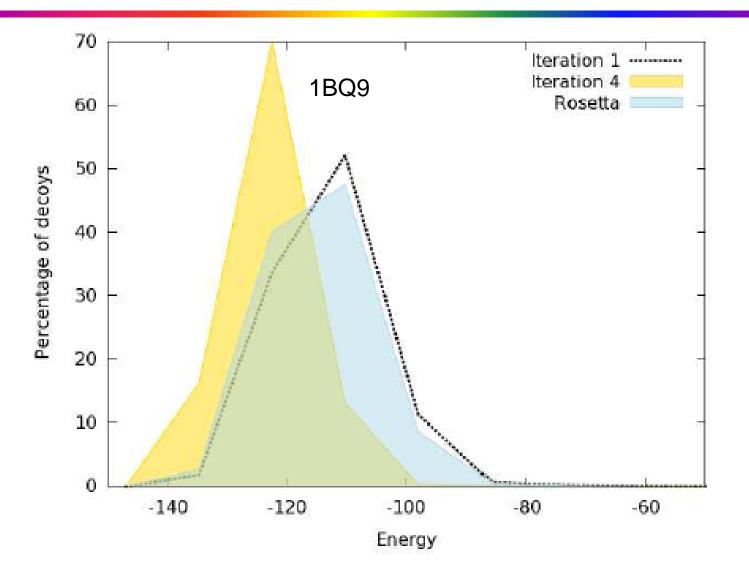
Energy improvement on coarse-grained models



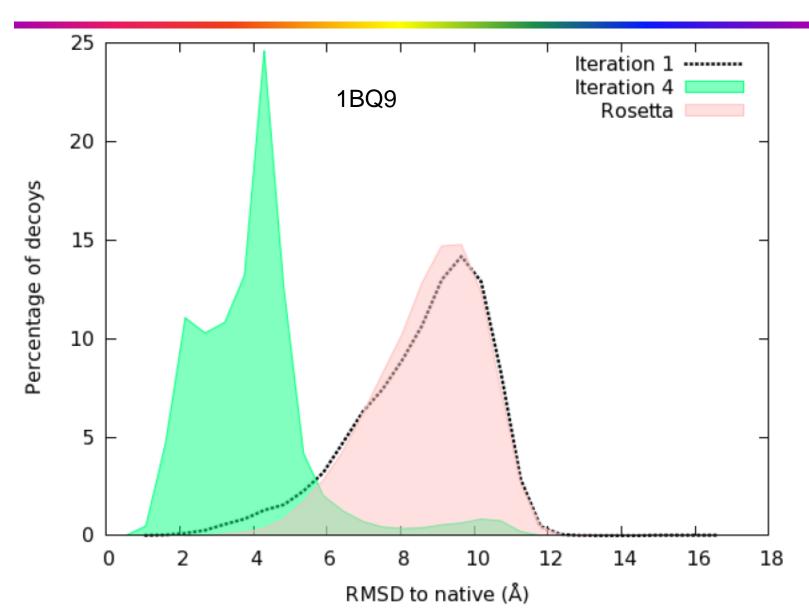
RMSD improvement on coarse-grained models



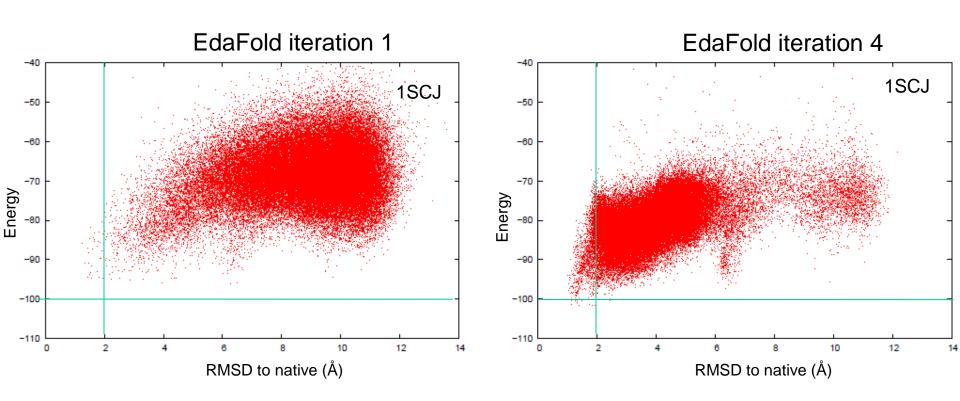
Energy landscape of coarse-grained models


Compare coarse-grained models generated by EdaFold and Rosetta

í <u>EN</u>	90		Ed		Rosetta				
		avg CARMSD (Å)		avg e-CARMSD (Å)		avg CARMSD (Å)		avg e-CARMSD (Å)	
Targe	et Length		top 1%	top 1‰	top 1%	top 1‰	top 1%	top 1‰	top 1%
1bq9	54	1.98	2.97	9.13	8.87	3.53	4.63	9.00	7.83
1di2	69	1.35	1.57	4.23	4.75	1.51	1.91	4.17	4.07
$1scj_{I}$	3 71	2.66	3.05	3.08	3.06	3.62	4.22	4.60	4.42
1hz5	72	2.28	2.6	3.95	4.06	2.23	2.49	3.88	3.80
1cc8	73	2.69	3.3	6.80	6.42	2.71	3.22	5.05	3.60
1ctf	74	3.19	3.94	7.09	7.05	3.1	3.73	8.37	7.92
1ig5	75	2.34	2.75	4.55	4.16	2.34	2.72	5.03	4.30
1dtj	76	2.73	3.66	6.82	5.85	2.73	3.7	6.29	3.58
1 ogw	76	2.64	3.07	4.66	4.66	2.89	3.29	4.70	4.61
1dcj	81	2.76	3.41	5.18	5.00	2.91	3.52	5.99	5.06
2ci2	83	3.23	4.72	8.10	8.12	3.16	4.17	9.15	9.95
3nzl	83	3.74	4.14	5.26	5.27	3.94	4.49	7.33	7.75
1a19	90	3.18	3.76	5.55	4.44	3.46	4.37	8.62	8.52
1 tig	94	3.4	3.83	4.96	4.52	3.33	3.95	4.75	4.13
1bm8	3 <u>99</u>	3.67	4.36	8.89	6.71	3.65	4.57	8.82	8.73
4ubp	_A 101	4.13	4.87	11.24	12.50	3.85	4.63	9.87	8.51
1iib	106	3.29	4.42	9.41	9.72	3.28	4.7	10.44	11.28
1m6t	106	1.67	2.01	3.56	4.82	1.94	2.34	3.98	3.51
1acf	125	3.96	4.68	10.40	8.54	4.75	5.92	10.34	12.17
3chy	128	3.52	4.51	6.99	4.87	3.88	4.93	7.81	5.90
Avg.		2.92	3.58	6.49	6.17	3.14	3.88	6.90	6.48



Energy distribution of all-atom models



Quality distribution of all-atom models

Energy landscape of all atom models

Performance of EdaFold and Rosetta

		avg C_{α} RMSD (Å)				avg e-C _{α} RMSD (Å)			
		EdaFold		Rosetta		EdaFold		Rosetta	
Target	Length	top 1‰	top 1%	top 1‰	top 1%	top 1‰	top 1%	top 1‰	top 1%
1bq9	54	1.29	1.75	3.33	4.51	2.04	2.84	8.79	8.81
1di2	69	0.70	0.86	0.91	1.43	1.04	1.12	1.47	2.52
$1scj_B$	71	3.26	4.08	3.53	4.22	7.47	8.32	7.72	8.20
1hz5	72	2.26	2.52	2.21	2.46	3.32	3.27	4.45	4.66
1cc8	73	2.09	2.40	2.46	3.13	4.35	4.65	5.00	5.69
1ctf	74	3.44	4.36	3.09	3.76	6.76	6.82	5.55	6.16
1ig5	75	2.24	2.61	2.29	2.68	6.04	6.01	4.20	4.84
1dtj	76	2.46	3.56	2.41	3.47	4.85	6.96	4.11	6.33
1 ogw	76	2.25	2.72	2.67	3.10	3.51	3.99	4.60	5.19
1dcj	81	2.55	3.02	2.68	3.38	4.17	4.76	5.64	6.14
2ci2	83	3.18	4.81	2.95	4.15	7.58	7.59	8.50	9.00
3nzl	83	3.63	4.11	3.83	4.45	7.81	7.60	9.06	9.06
1a19	90	2.90	3.55	3.28	4.34	6.87	7.87	9.51	10.01
1tig	94	3.28	3.74	3.20	3.89	5.38	5.41	6.84	7.11
1bm8	99	3.76	4.79	3.58	4.55	11.68	11.87	10.26	10.93
$4ubp_A$	101	4.13	4.90	3.86	4.70	10.22	10.57	11.33	11.34
1iib	106	1.22	1.42	1.46	1.84	1.89	1.94	2.08	2.70
1m6t	106	2.92	4.00	3.30	4.82	10.46	10.33	10.01	10.35
1acf	125	3.20	3.94	4.55	5.85	5.73	7.37	12.67	12.99
3chy	128	3.51	4.63	3.82	4.93	11.09	10.85	10.22	10.71
Avg.		2.3	2.85	2.45	3.25	5.65	5.9	6.7	7.2

Performance of EdaFold and Rosetta

	First pre	diction	Best pre	diction	Best model		
Target	EdaFold	Rosetta	EdaFold	Rosetta	EdaFold	Rosetta	
1bq9	1.55	4.32	1.38	4.32	1.09	2.65	
1di2	1.00	1.23	0.76	0.86	0.61	0.72	
1scj	7.74	7.23	3.61	6.36	2.59	3.04	
1hz5	3.21	3.51	3.00	3.18	1.96	1.97	
1cc8	3.89	8.28	3.66	3.29	1.89	2.03	
1ctf	7.05	4.84	4.58	2.76	2.96	2.71	
1ig5	6.46	2.64	3.63	2.64	1.96	1.97	
1dtj	1.72	1.72	1.69	1.72	1.72	1.77	
10gw	2.47	2.71	2.47	2.71	1.82	2.17	
1dcj	5.02	3.02	2.50	2.56	2.28	2.24	
2ci2	7.73	8.47	6.77	6.41	2.48	2.43	
3nz1	5.95	5.80	5.95	5.33	3.31	3.35	
1a19	2.73	3.76	2.73	3.10	2.48	2.64	
1tig	4.07	3.92	3.69	3.72	2.75	2.71	
1bm8	9.03	3.73	3.44	3.73	3.18	2.93	
4ubp	10.48	10.50	5.87	8.51	3.47	3.20	
1m6t	1.99	1.94	1.34	1.88	1.07	1.25	
1iib	2.50	15.28	2.50	9.46	2.33	2.50	
1acf	3.60	11.64	3.00	6.10	2.69	3.71	
3chy	4.38	12.37	4.38	5.38	2.76	3.09	
Average	4.63	5.85	3.35	4.20	2.27	2.45	

Acknowledgment

- David Simoncini
- Francois Berenger
- Rojan Shrestha
- Dr. David Baker & members of Rosetta commons for making Rosetta source code available
- Dr. Ryutaro Himeno and his staff at HPC for help
- RICC for computing time
- RIKEN Initiative Research Unit Program for funding

Thank you!

あ とう

6

RIKEN