
HPC computers: Status and outlook

J.J. Dongarra
University of Tennessee
and
Oak Ridge National Laboratory
and
University of Manchester
dongarra@eecs.utk.edu

1 Historical Overview

Looking back on the last four decades, high performance computing (HPC) has
been characterized by rapid change in vendors, architectures, technologies, al-
gorithms, software, and system usage. Despite all these changes, performance
has evolved steadily, where performance is measured by the number of flops per
second, a flop being an elementary floating-point operation (addition, subtrac-
tion, multiplication, or division). Often cited in this context is Moore’s Law,
which states that the number of transistors on integrated circuits doubles ap-
proximately every two years. Figure 1 plots the peak performance of various
computers of the last six decades, all supercomputers of their time, and demon-
strates how well Moore’s law holds for performance for nearly the entire lifespan
of modern computing.

EDSAC 1
UNIVAC 1

IBM 7090

CDC 6600
IBM 360/195

CDC 7600 Cray 1
Cray X-MP

Cray 2 TMC CM-2

TMC CM-5 Cray T3D
ASCI Red

ASCI White Earth Simulator
Blue Gene/L

Roadrunner
Tianhe-1A

K
BG/Q

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

1.00E+15

1.00E+16

1.00E+17

1
9

5
0

1
9

5
7

1
9

6
4

1
9

7
1

1
9

7
8

1
9

8
5

1
9

9
2

1
9

9
9

2
0

0
6

Year

Fl
o

p
/s

Moore's Law

Figure 1: Peak performance of the fastest computer systems for the last six
decades.

1

The initial success in the 1970s of vector computers, which could carry out
operations on whole vectors at at time, was driven by raw performance. The
introduction of this type of computer system started the modern supercomput-
ing era. In the 1980s the availability of standard development environments and
application software packages became more important. Next to performance,
these criteria determined the success of multiprocessor vector systems, especially
with industrial customers.

Massively parallel processing (MPP) computers, which share the work among
a large number of processors, became successful in the early 1990s due to their
better price/performance ratios, enabled by increased performance of “off the
shelf” microprocessors. In the lower and medium market segments, the MPPs
were replaced by microprocessor-based symmetric multiprocessing (SMP) sys-
tems (systems in which identical processors share the same memory) in the
middle of the 1990s. The success of microprocessor-based SMPs, even for the
very high-end systems, was the basis for the emergence of cluster concepts in
the early 2000s. During the first half of the decade clusters of PCs and worksta-
tions became the prevalent architecture for many application areas. However,
the Japanese Earth Simulator vector system (2002) demonstrated that many
scientific applications could benefit greatly from a different computer architec-
ture and created renewed interest within the scientific HPC community in new
architectures and new programming paradigms.

The IBM Roadrunner system at Los Alamos National Laboratory, which
employs a hybrid design built from commodity parts, broke the petaflops (1015

floating-point operations per second) threshold in June 2008. The next major
target is exascale computing (1018 floating-point operations per second), a thou-
sandfold increase over petascale, which is not expected to be achieved before
2018.

2 Challenges

Science priorities lead to scientific models, and models are implemented in the
form of algorithms. Algorithm selection is based on various criteria, such as
accuracy, verification, convergence, performance, parallelism, and scalability.
Models and associated algorithms are not selected in isolation but must be
evaluated in the context of the existing computer hardware environment. Algo-
rithms that perform well on one type of computer hardware may become obso-
lete on newer hardware, so selections must be made carefully and may change
over time. Moving forward to exascale will put heavier demands on algorithms
in at least two areas: the need for increasing amounts of data locality in order
to perform computations efficiently, and the need to obtain much higher fac-
tors of fine-grained parallelism as high-end systems support increasing numbers
of compute threads. As a consequence, parallel algorithms must adapt to this
environment, and new algorithms and implementations must be developed to
exploit the computational capabilities of the new hardware. The transition from
current sub-petascale and petascale computing to exascale computing will be

2

at least as disruptive as the transition from vector to parallel computing in the
1990’s.

We now describe some of the particular challenges ahead in the use of high
performance computers.

2.1 New Algorithms for Multicore Architectures

Multicore processors, in which a single chip contains two or more independent
processing units called cores, are now ubiquitous on the desktop through to HPC
systems. Scalable multicore systems bring a growing cost of communication
relative to computation. Within a node (a single multicore processor) data
transfer between cores is relatively inexpensive, but across nodes the cost of
data transfer is becoming very large. This trend is addressed by new approaches
such as communication-avoiding algorithms (see Section 2.4), algorithms that
support simultaneous computation and communication, and algorithms that
vectorize well and have a large volume of functional parallelism.

2.2 Adaptive Response to Load Imbalance

Adaptive multiscale algorithms are an important part of many applications be-
cause they apply computational power precisely where it is needed. However,
they introduce dynamically changing computation that results in load imbal-
ances from a static distribution of tasks. As we move towards systems with
billions of processors, even naturally load-balanced algorithms on homogeneous
hardware will present many of the same daunting problems with adaptive load
balancing that are observed in today’s adaptive codes. For example, software-
based recovery mechanisms for fault-tolerance or energy-management will cre-
ate substantial load-imbalances as tasks are delayed by rollback to a previous
state or correction of detected errors. Scheduling based on a directed acyclic
graphs (DAGs) also requires new approaches to optimize resource utilization
without compromising spatial locality. These challenges require development
and deployment of sophisticated software approaches to rebalance computation
dynamically in response to changing workloads and conditions of the operating
environment.

2.3 Multiple Precision Algorithms and Software

One instance of the increasingly adaptive nature of libraries is the capability
to recognize and exploit the presence of mixed precision arithmetic. Motiva-
tion comes from the fact that, on modern architectures, 32-bit (single precision)
floating-point operations can execute at least twice as fast as 64-bit (double
precision) operations. The performance of algorithms for solving linear systems
or computing eigenvalues or singular values can be significantly enhanced by
applying a given method in single precision then using a few steps of iterative
refinement in double precision to elevate the accuracy of the result from single

3

to double precision. This technique can be applied not only to conventional pro-
cessors but also to other technologies such as graphics processing units (GPUs),
and so can more effectively utilize heterogeneous hardware. The use of mixed
precision exploits not only the greater speed of single precision arithmetic but
also the reduce storage and memory traffic of single versus double precision
arrays.

2.4 Communication Avoiding Algorithms

Algorithmic complexity is usually expressed in terms of the number of operations
performed rather than the quantity of data movement within memory. However,
in modern systems memory movement is increasingly expensive compared with
the cost of computation. It is therefore necessary to develop algorithms that
reduce communication to a minimum while not unduly increasing the amount
of computation. A general approach is to derive bandwidth and latency lower
bounds for various dense and sparse linear algebra algorithms on parallel and
sequential machines, e.g., by extending the well-known lower bounds for the
usual O(n3) matrix multiplication algorithm, and then to seek new algorithms
that (nearly) attain these lower bounds. The study of communication-avoiding
algorithms is in its infancy, but it is already leading to new algorithmic ideas
and approaches.

2.5 Auto-tuning

Numerical libraries need to have the ability to adapt to the possibly hetero-
geneous environment in which they have to operate in order to achieve good
performance, energy efficiency, load balancing, and so on. The objective is to
provide a consistent library interface that remains the same for users indepen-
dent of scale and processor heterogeneity, but which achieves good performance
and efficiency by binding to different underlying code, depending on the con-
figuration. In addition, the auto-tuning has to be extended to frameworks that
go beyond library limitations, and are able to optimize data layout (such as
blocking strategies for sparse matrix kernels), stencil auto-tuners (since stencil
kernels, which update array elements according to a fixed pattern, are diverse
and not amenable to library calls) and even tuning of the optimization strategy
for multigrid solvers (optimizing the transition between the multigrid coarsening
cycle and course grid solver to minimize run time). Adding heuristic search tech-
niques and combining them with traditional compiler techniques will enhance
the ability to address generic problems.

2.6 Fault Tolerance and Robustness for Large-Scale Sys-
tems

Modern PCs may run for weeks without rebooting and most data servers are ex-
pected to run for years. However, because of their scale and complexity, today’s
supercomputers run for only a few days before a reboot is needed. The major

4

challenge in fault tolerance is that faults in extreme scale systems, with their
millions of processors, will be continuous rather than exceptional events. This
requires a major shift from today’s software infrastructure. On today’s super-
computers every failure kills the application running on the affected resources.
These applications have to be restarted from the beginning or from their last
checkpoint. The checkpoint/restart technique will not scale to highly parallel
systems because a new fault will occur before the application can be restarted,
causing the application to become stuck in a state of constant restarts. New
fault tolerant paradigms need to be developed and integrated into both the
system software and user applications.

2.7 Building Energy Efficiency into Algorithm Founda-
tions

Energy consumption is becoming a major issue in HPC, with energy costs for
the some of the largest machines already exceeding a million dollars per year.
Power and energy consumption must now be added to the traditional goals of
algorithm design, namely correctness and performance. The emerging metric of
merit is performance per watt. Energy reduction depends on software as well
as hardware., so it is essential to build power and energy awareness, control and
efficiency into the foundations of numerical libraries.

2.8 Sensitivity Analysis

As the high fidelity solution of models becomes possible, the next challenge is
to study the sensitivity of the model to parameter variability and uncertainty
and to seek an optimal solution over a range of parameter values. The most
basic form, the forward method for either local or global sensitivity analysis,
simultaneously runs many instances of the model or its linearization, leading to
an embarrassingly parallel execution model. Such high-throughput computing
tasks are well suited to using spare cycles on pools of PCs, for example running
at night or weekends.

2.9 Numerical Pitfalls

Problems that warrant the use of the fastest computers are necessarily among
the largest problems ever to be solved, according to any appropriate measure
of problem dimension. Various mathematical or numerical difficulties can po-
tentially arise as dimensions grow ever larger, including slower convergence of
an iterative method that has performed well for smaller problems, computed
results having lower accuracy due to an increased number of rounding errors,
and overflow of intermediate results. A good example of what can go wrong con-
cerns the use of random number generators to construct linear systems Ax = b
to be solved by Gaussian elimination with partial pivoting for benchmarking
purposes. The obvious approach is to fill the columns of the matrix A, one
by one, with the output from a pseudorandom number generator. A few years

5

ago, after a computation of this form lasting 20 hours, the computed result
was found to be incorrect. The cause was eventually identified as a singular
matrix A: the number of matrix elements exceeded the period of the random
number generator, with the result that columns repeated and the matrix was
singular. By itself, singularity should not affect the computation, since round-
ing errors usually ensure that the matrix is numerically nonsingular. However,
the presence of exactly repeated columns eventually leads to zero pivots, which
cause algorithm failure. The moral of the story is that a code that has worked
perfectly up to a certain problem size can fail in subtle ways for larger problems.

One desirable numerical property of extreme-scale computing is bit-wise re-
producibility of results for any fixed processor count. But current computing
frameworks and libraries do not guarantee reproducibility. This is usually caused
by a parallel reduction operation. While the corresponding operation is math-
ematically associative, associativity may not hold in floating point arithmetic.
For example, the natural way to evaluate the sum a + b + c + d is from left to
right, but alternatives are (a + b) + (c + d) and (a + c) + (b + d), which are
trivial examples of a parallel reduction operation, and these three expressions
will usually produce different results in floating point arithmetic. In general,
one cannot make assumptions about the order in which reduction operations
are carried out in parallel, so the values computed in floating point arithmetic
may depend on the number of threads of execution. This makes it much harder
to debug programs. At extreme scale it may be possible to construct faster
algorithms if the order of evaluation is not pre-specified, for example through
the use of dynamic task scheduling. Thus, there may trade-offs between speed
and reproducibility. Furthermore, it may be possible to more cheaply ensure a
bound on the variability between different runs than to guarantee strict repro-
ducibility, for example by using extra precision in selected parts of an algorithm.
Many users may prefer non-reproducible results produced very quickly. along
with a bound on the variability.

3 Outlook

The move to extreme-scale computing will require collaboration between hard-
ware architects, systems software experts, designers of programming models,
and implementers of the science applications that provide the rationale for these
systems. The various issues discussed in this article will need to be considered
from a whole system perspective, and the different tools will need to interop-
erate. As new ideas and approaches are identified and pursued, some will fail.
As with past experience, there may be breakthroughs in hardware technologies
that result in different micro and macro architectures becoming feasible and
desirable, and these will require rethinking of algorithms and system software.

6

Further Reading

References

[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communica-
tion in numerical linear algebra. SIAM J. Matrix Anal. Appl., 32(3):866–901,
2011.

[2] J. Dongarra, P. Beckman, et al. International exascale software project
roadmap. Int. J. High Performance Computing Applications, 25(1):3–60,
2011.

[3] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. Van der Vorst. Numer-
ical Linear Algebra for High-Performance Computers. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1998.

[4] J. J. Dongarra and J. Langou. The problem with the Linpack benchmark
1.0 matrix generator. Int. J. High Performance Computing Applications,
23(1):5–13, 2009.

[5] J. J. Dongarra and A. J. van der Steen. High-performance computing sys-
tems: Status and outlook. Acta Numerica, 21:379–474, 2012.

7

	Historical Overview
	Challenges
	New Algorithms for Multicore Architectures
	Adaptive Response to Load Imbalance
	Multiple Precision Algorithms and Software
	Communication Avoiding Algorithms
	Auto-tuning
	Fault Tolerance and Robustness for Large-Scale Systems
	Building Energy Efficiency into Algorithm Foundations
	Sensitivity Analysis
	Numerical Pitfalls

	Outlook

