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E Rough Set
E Multi-Objective Design Exploration (MODE)

+ Application to Regional Jet Design
E Wing-Nacelle-Pylon-Body Configuration
E Analysis of Sweet-Spot Cluster

£ Conclusion
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Flow transition:
Reynolds number

Figure 4.49 Osborne Reynolds's apparatus for his famous pipe-flow experiments. This figure is from
his original paper, referenced in the text.
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103. R ition of B lds’ dye Osborne
Reynolds' celebrated 1883 investigation of stability of flow
In a tube was documented by sketches rather than photog-
raphy. However the original apparatus has survived ar the
University of Manchester. Using it a century later, N. H.
Johannesen and C. Lowe have taken this sequence of
photographs. In laminar flow a flament of colored waver

introduced at a bell-shaped entry extends undisturbed the
whole kength of the glass tube. Transition is seen in the sec-
ond of the photographs as the speed is increased; and the
last two photographs show fully turbulent flow. Modern
traffic in the streets of Manchester made the critical
Reynolds number lower than the value 13,000 found by
Reynolds,
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Flow visualization: Seelng IS bellevmg
(Seeing is understanding)
(Picture 1s worth a thousand words)

94. Kdrmin vortex street behind a circular eylinder at
R=140. Water is flowing at L4 cm/s past a cylinder of
diameter | cm. Integrated streaklines are shown by electro-
lytic precipitation of a white colloidal smoke, illuminated

by a sheet of light. The vortex sheet is seen to grow in
width downatream for some diameters. Photograph by Sada
vashi Taneda
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Aerodynamics Propulsion Structure

«Compromise of all disciplines
*Multidisciplinary Design Optimization (MDO)
as Multi-Objective Optimization (MOP)
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+ Global optimization is needed \\
+ Visualization is essential! \
+ Data mining is required Pareto front
+ Design optimization—Design exploration f,
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Minimization problems -

Projection
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B Neural network model proposed by Kohonen
Unsupervised, competitive learning
E High-dimensional data — 2D map

B Qualitative description of data
n Y <,

*Neuron is self-organized so that similar
neurons are neighbored to each other.
*Similar neurons form a cluster

b




B Colored SOMs identify the global structure of the
design space

B Resulting clusters classify possible designs

B If a cluster has all objectives near optimal, it is called as
sweet-spot cluster

B If the sweet-spot cluster exists, it should be analyzed in
detail
F Visualization of design variables

F Data mining, such as decision tree
and rough set
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Design Database
: — l — Step 2
Visualization and Data Mining > Know|ede:e Mining

l Data mining:

e ——
Design Knowledge | Maps, patterns,
models, rules _/




FSW

(Friction Stir Welding) New Light Composite Material

Advanced Higher L/D Wing

Health

Monitoring - : . i
System for Optimized High Lift Device

LRU More Electric

Aero-Structure Multi-Disciplinary Design Optimization
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Shock wave occuring at inboard of pylon may lead
to and

Minimize
1. Drag at the cruising condition (C,)

2. Shock strength near wing-pylon junction (-C, ...,)
3. Structural weight of main wing (wing weight)

v Function evaluation tools
- CFD: Euler code (TAS-code)
* CSD/Flutter analysis: MSC. NASTRAN

-Cp distribution of lower surface @n=0.29




Definition of Optimization Problem -2
- Design Variables -

- Lower surface of Airfoil shapes at 2 spanwise sections
(n=0.12, 0.29)
— 13 variables (NURBS) x 2 sections = 26 variables

= Twist angles at 4 sections =4 variables
30 variables in total
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Definition of Configuration Variables for Data Mining

® XmaxL
® maxL

® XmaxTC
® maxTC

® sparTC

At wing root and pylon
locations

l

10 variables
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Visualization of Design Space
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Analysis of Sweet—Spot Cluster

® Handpick
® Parallel coordinates

® Extraction of design rules by
discretization of configuration variables
v'Visualization
v'Rough set
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SIS G Handpick
IF -C and dv6 (XmaxTC at pylon)
obj2
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Sweet Cd Cp WW Number Airfoil parameters
dv1 11 1 1 5 dvl XmaxL @ n=0.12
dv2 9 2 6 3 dv2 XmaxL @ n=0.29
dv3 8 5 6 4 dv3 maxL @ n=0.12
dv4 10 3 5] 11 dv4 maxL @ n=0.29
dvd 13 8 1 7 dvs XmaxTC @ n=0.12
dv6 6 & 3 dve XmaxTC @ n=10.29
dv7 5 6 5 dv7 maxTC @ n=10.12
dv8 4 3 2 dv8 maxTC @ n=10.29
dv9 2 2 3 dv9 sparTC @ n=0.12
dv10 14 9 8 8 dv10 sparTC @ n=0.29

large wic |
small pfﬂ(xm/ﬁ ..... S
No large dv10 | ST ]

+ Multi-Objective Design Exploration (MODE) has
been proposed

E Visualization and data mining based on SOM

+ Regional-jet design has been demonstrated
E Wing-nacelle-pylon-body configuration

v'SOM reveals the structure of design space
and visualizes it

v'Analysis of the sweet-spot cluster leads to
design rules
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