

Visualization of Design Space -What is MODE?

Shigeru Obayashi

Institute of Fluid Science Tohoku University

Outline

Background

- Flow Visualization
- Multidisciplinary Design Optimization (MDO)
- Self-Organizing Map (SOM)
- Rough Set
- Multi-Objective Design Exploration (MODE)
- Application to Regional Jet Design
 - Wing-Nacelle-Pylon-Body Configuration
 - Analysis of Sweet-Spot Cluster
- Conclusion

1

Flow Visualization -1

Flow transition: Reynolds number

Figure 4.49 Osborne Reynolds's apparatus for his famous pipe-flow experiments. This figure is from his original paper, referenced in the text.

103. Repetition of Reynolds' dye experiment. Osborne Reynolds' celebrated 1883 investigation of stability of flow in a tube was documented by sketches rather than photography. However the original apparatus has aurived at the University of Manchester. Using it a century later, N. H. Johannesen and C. Lowe have taken this sequence of photographs. In laminar flow a filament of colored water introduced at a bell-shaped entry extends undisturbed the whole length of the glass tube. Transition is seen in the second of the photographs as the speed is increased; and the last two photographs show fully turbulent flow. Modern traffic in the streets of Manchester made the critical Reynolds number lower than the value 13,000 found by Reynolds.

Flow Visualization -2

Aircraft Design

Visualization of Tradeoffs

Self-Organizing Map(SOM)

- Neural network model proposed by Kohonen Unsupervised, competitive learning
- **I** High-dimensional data \rightarrow 2D map
- Qualitative description of data

SOM provides design visualization: Seeing is understanding (Essential design tool)

Neuron is self-organized so that similar neurons are neighbored to each other.
Similar neurons form a cluster

- Colored SOMs identify the global structure of the design space
- Resulting clusters classify possible designs
 - If a cluster has all objectives near optimal, it is called as sweet-spot cluster
 - If the sweet-spot cluster exists, it should be analyzed in detail
 - Visualization of design variables
 - Data mining, such as decision tree and rough set

η**= 0.29**

-C_P distribution of lower surface @η=0.29

Direction

CD

Definition of Configuration Variables for Data Mining

Handpick
Parallel coordinates
Extraction of design rules by discretization of configuration variables

- ✓Visualization
- ✓Rough set

19

Data Mining Results from Rough Set

	Sweet	Cd	Ср	WW
dv1	11	1	1	5
dv2	9	2	6	3
dv3	8	5	6	4
dv4	10	3	5	11
dv5	13	8	1	7
dv6	7	6	3	3
dv7	9	5	6	5
dv8	2	4	3	2
dv9	9	2	2	3
dv10	14	9	8	8
		0 P		

small

No large dv10

Number	Airfoil parameters	
dv1	XmaxL @ η= 0.12	
dv2	XmaxL @ η= 0.29	
dv3	maxL @ η= 0.12	
dv4	maxL @ η= 0.29	
dv5	XmaxTC @ η= 0.12	
dv6	XmaxTC @ η= 0.29	
dv7	maxTC @ η= 0.12	
dv8	maxTC @ η= 0.29	
dv9	sparTC @ η= 0.12	
dv10	sparTC @ η= 0.29	

Conclusions

- Multi-Objective Design Exploration (MODE) has been proposed
 - Visualization and data mining based on SOM
- Regional-jet design has been demonstrated
 - Wing-nacelle-pylon-body configuration
 - SOM reveals the structure of design space and visualizes it
 - Analysis of the sweet-spot cluster leads to design rules

Acknowledgements

- Prof. Shinkyu Jeong and Dr. Takayasu Kumano
- Mitsubishi Heavy Industries
- Supercomputer NEC SX-8 at Institute of Fluid Science
- Prof. Yasushi Ito, University of Alabama at Birmingham, for EdgeEditor (mesh generator)
- Prof. Kazuhiro Nakahashi, Tohoku University, for TAS (unstructured-mesh flow solver)