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Motivation

Most production/commercial codes only 1st or 2nd
order accurate, i.e. Error «ch® with p =1 or 2

«» Though adequate for a wide range of applications,
many problems require higher-order accuracy. For

example:
«» Aeroacoustic problems;
« Vortex dominated flow ...




introduction
Many criteria can be used to classify high-order
methods

> Based on type of grids: structured grid vs.
Cunstructuredgrid high-order methods

> Based of the type of solutions: continuous or
ddiscontinuou® high-order methods

« Continuous high-order methods
» SUPG, RD, spectral element, ...

« Discontinuous high-order methods:

» Discontinuous Galerkin, staggered-grid, spectral
volume, spectral difference, flux reconstruction, ...




iieview of Godunov FV Method

onsider

8u4_8f(u)

ot OX
on domain Q with proper initial and boundary
conditions. Q Is discretized into non-
overlapping CVs {V}. Integrating in V,

/
oy, 1 of au,
ot AX; + j &dx T AX; + (Ti,12 = Tij2) =0

=0

i-1/2 i+1/2




iGodunov FV Method (cont.)

» Assume the solution Is piece-wise constant, or a
degree O polynomial.

«» However, a new problem is created. The
solution Is discontinuous at the interface

<+ In addition the obvious solution
|+1/2 [f (U )+ f (u|+1)]/2

IS unstable
« A “shock-tube” problem solved
to obtain the flux U,
by Godunov | |

i-1/2 i+1/2




fxtension to Higher-Order

The only way to improve the solution accuracy
IS to Increase the polynomial degree of the
solution at each cell

« KEFV, DG, SV and SD methods all degenerate
to the Godunov method when p = 0.

« To represent a polynomial of higher than p=0,
multiple DOFs are required, e.g.,

~~ \

UX)=a+bx+cx’+++ m——— |
1-1/2 +1/2

<+ These methods differ on how DOFs are defined

and updated.
g ANEHP




flux Reconstruction Method

- Given the solution at SPs, build a solution

polynomial

in P

«» Compute the flux at the SPs, and build an
interior flux polynomial F (x)

« Compute Riemann fluxes at interfaces

<+ Find a flux
than the so

IR0 -F )

polynomial F(x) one degree higher
ution, which minimizes

/ Riemann Flux

/ Interior Flux




iFqu Reconstruction Method (cond.)

The use the following to update the DOFs
du, ; N dF (X ;) 0
dt dx

< Different conditions results in different
methods. In particular, If

IR0 -F ()| L P

the scheme Is DG




%ifting Collocation Penalty Approach

onsider

QL VeF(Q)-
= 4VeF(Q)=0

The weighted residual form is

(_+V0F(Q))\Ndv j WdV+jWF(Q).nds jvw F(Q)dV
=0.

Let Q" be the discontinuous approximate solution in Pk,
The face flux integral replaced by a Riemann flux

ag' WdV + jWF (Q.Qf,M)dS— [ VW ¢ F(Q")dV =0,
Performlng mtegratlon by parts to the last term
GQ N
= F"(Q.QL.M)-F"(Q")]ds =0.
ow s WiF | e




i_'ifting Collocation Penalty Approach (cont.)

troduce the lifting operator

jwa dv = jvv[ |ds

where s, P, [~]=[F (Q".Q.M-F"(Q") |. Then we have

@Q

which Is equwalent to

oQ
ot

In the new formulation, the weighting function completely
disappears! Note that s depends on W.
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%ifting Operator — Correction Field

bviously, the computation of s is the key. From

jvva dv = jvv[ |ds,

if [F|.6eP* 5 can be computed explicitly given W. Define
a set of “flux points” along the faces, and set of solution
points, where the “correction field” is computed as shown.

Then

ZZanI[F]fI 1

f eoV,

N.

@ o lifting coefficients independent of Q
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fhe LCP Formulation (cont.)

nally the following equation is solved at the solution
point j (collocation points)

aQij Z Zaj,f,l[lf]f,lsf =0.

= 1
L+VeF(Q" )+
0t ! feov; |

v
The first two terms correspond to the differential equation,
and the 3" term is the “lifting penalty” term, thus the
name LCP. If all the flux points coincide with the solution
points, the formulation is the most efficient
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Computation of the Interior Divergence

w to compute the red term?

aQit?] = h 1 ~
- +V.F(Qi,j)+lv—i > Na,\[F1,,S, =0.

f e@Vi I

« Lagrange polynomial (LP) —-
» Compute the fluxes at the solution points, and then
generate Lagrange flux polynomials

> Take the divergence at the solution points
« Chain rule (CR)

OF*(Q") , OF’(Q') _0F* 0Q  OF’ aQ) _ oF |

VeFQ)="7, &y 0Q ox  0Q oy o0

vQ'

More accurate!
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Recovering the DG, SV and SD Methods

Let weP*, the DG method is exactly recovered, at least
In the linear case. For k = 1,

M

« For the SV method, select piece-wise constant W

= [(25[F],, +05[F,,)S, + (-15[F],, ~L5[F],,)S, + (O5[F],, + 25[F,,)S, ]

L @IFL, +0.2[F1,,)S, + (<0.7[F],, ~0.7[F1,,)S, + (0.2[F T, + 2[F];.,)S,]

v

<+ For the SD method, more involved but doable for
equilateral triangle

M

L 2IF1.S, + (-05[FT,, ~ 05[F1,,)S, + 2[F1,,S: ]

UNIVERSITY




LCP Algorithm

Compute the cell interior divergence using either the LP
or CR approaches (no-coupling);

«» Compute the Riemann fluxes at the flux points, and also
compute the normal component of the interior flux;

< Scatter the corrections to the elements

aQir?j = h 1 ~
a +V.F(Qi,j)+|v—l > > a, . [F1,S, =0.

Advantages:
< NO reconstruction cost
< NO mass matrix
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Mixed Grids

» In order to minimize data reconstruction and
communication, solution points coincide with

flux points
«» For quadrilateral elements,
the corrections are one-
dimensional!
« Mass matrix is | for all
cell-types
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|Curved Boundaries
Transform the governing equations from the

(curved) physical domain to the (straight)
computational domain;

« The LCP formulation Is then applied to the
transformed equations in the standard element

« Straightforward!

0Q  OF¢ OF”
+ + =
ot o0& apy

0

o o



{est Cases

Accuracy studies for scalar conservation laws;
« Accuracy study for the Euler equations

« Flow over a cylinder

« Flow over a NACAO0012 airfoll

~low over a sphere




Ui + Uy +Uy =0, withup(x,y) =sinz(x +y),att=1

LCP-DG
Polynomial Grid size Regular Mesh Irregular Mesh

degree k L2 error Order L2 error Order

10x10x2 2.44e-2 - 4.45e-2 -
20x20x2 5.89¢e-3 2.05 1.05e-2 2.08
1 40x40x2 1.46e-3 2.01 2.57e-3 2.03
80x80x2 3.64e-4 2.00 6.41e-4 2.00

10x10x2 1.88e-3 - 3.99¢-3 -
20x20x2 2.38e-4 2.98 5.14e-4 2.96
2 40x40x2 2.98e-5 3.00 6.47e-5 2.99
80x80x2 3.73e-6 3.00 8.10e-6 3.00

10x10x2 7.55e-5 - 2.59%¢-4 -
20x20x2 4.94e-6 3.93 1.59e-5 4.03
3 40x40x2 3.08e-7 4.00 9.91e-7 4.00
80x80x2 1.93e-8 4.00 6.19¢e-8 4.00

10x10x2 7.53e-8 - 5.87e-7 -
5 20x20x2 1.18e-9 6.00 9.22e-9 5.99
40x40x2 1.85e-11 6.00 1.43e-10 6.01
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Ui + Uy +Uy =0, withup(x,y) =sinz(x +y),att=1

LCP-SV
Polynomial Grid size Regular Mesh Irregular Mesh

deg ree k L, error Order L, error Order

10x10x2 5.94e-2 - 1.0le-1 -
20x20x2 1.45e-2 2.03 2.62e-2 1.95
1 40x40x2 3.72e-3 1.96 6.55e-3 2.00
80x80x2 9.23e-4 2.01 1.63e-3 2.01

10x10x2 2.84e-3 - 7.47e-3 -
20x20x2 3.71e-4 2.94 9.09e-4 3.04
2 40x40x2 4.73e-5 2.97 1.13e-4 3.01
80x80x2 5.97e-6 2.99 1.42e-5 2.99

10x10x2 1.04e-4 - 4.37e-4 -
20x20x2 6.53e-6 3.99 2.58e-5 4.08
3 40x40x2 4.11e-7 3.99 1.56e-6 4.05
80x80x2 2.57e-8 4.00 9.61e-8 4.02
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u, +uu, +uu, =0, withuy(x,y) =0.25+0.5sinz(x+y), att=.1

LCP-DG on irregular mesh
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Polynomial Grid size Irregular Mesh (LP) Irregular Mesh (CR)
degree Kk L, error Order L, error Order
10x10x2 2.65e-2 - 1.84e-2 -
20x20x2 9.96e-3 1.41 5.06e-3 1.86
1 40x40x2 3.75e-3 1.41 1.35e-3 1.91
80x80x2 1.38e-3 1.44 3.50e-4 1.95
10x10x2 6.40e-3 - 2.75e-3 -
20x20x2 1.37e-3 2.20 4.04e-4 2.77
2 40x40x2 2.81e-4 2.29 5.50e-5 2.88
80x80x2 5.43e-5 2.37 7.27e-6 2.92
10x10x2 9.59e-4 - 3.68e-4 -
20x20x2 1.05e-4 3.19 2.58e-5 3.83
3 40x40x2 9.86e-6 3.41 1.82e-6 3.83
80x80x2 8.48e-7 3.54 1.27e-7 3.84
10x10x2 3.46e-5 1.07e-5 -
20x20x2 1.15e-6 4.91 2.61e-7 5.35
5 40x40x2 3.15e-8 5.19 4.45e-9 5.87
80x80x2 7.08e-10 5.48 8.27e-11 5.75




Accuracy Study with the Euler Equations

Vortex propagation problem

Polynomial o Irregular Triangular Mesh - Test 1 | Irregular Triangular Mesh - Test 2 Mix(egRl\)/Iesh
degree k Grid size (LP) (CR)

L, error Order L, error Order L, error Order

10x10x2 2.01e-2 - 1.39%-2 - 1.58e-2 -
20x20x2 6.67e-3 1.59 4.41e-3 1.66 5.32e-3 157
1 40x40x2 1.73e-3 1.95 1.08e-3 2.03 1.50e-3 1.83
80x80x2 4.84e-4 1.84 2.54e-4 2.09 3.54e-4 2.08

10x10x2 7.14e-3 - 4.41e-3 - 2.95e-3 -
20x20x2 1.07e-3 2.74 5.19e-4 3.09 5.62e-4 2.39
2 40x40x2 1.60e-4 2.74 5.84e-5 3.15 7.42e-5 2.92
80x80x2 2.29e-5 2.80 6.94e-6 3.07 8.63e-6 3.10

10x10x2 1.79%-3 - 6.70e-4 - 5.79%-4 -
20x20x2 1.40e-4 3.68 4.79e-5 3.81 5.05e-5 3.52
3 40x40%2 9.75e-6 3.84 2.96e-6 4.02 3.51e-6 3.85
80x80x2 6.96e-7 3.81 1.71e-7 411 1.89%-7 4.22
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|Inviscid Flow over a Cylinder - Triangles

Mach = 0.3, LCP-DG, 4t Order




Inviscid Flow over a Cylinder — Hybrid 1
Mach = 0.3, LCP-FR-DG, 4t Order

SO VAV i
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|Inviscid Flow over a Cylinder — Hybrid 2

Mach = 0.3, LCP-FR-DG, 4th Order




|FI0W over NACA0012 Airfoil — Hybrid Mesh
Mach = 0.3, a = 5 degrees, LCP-FR-DG, 2nd-4th

Order
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ow over NACA0012 Airfoll — Hybrid Mesh
Mach = 0.3, o = 5 degrees, 2"d Order

T




ow over NACA0012 Airfoll — Hybrid Mesh
Mach = 0.3, oo = 5 degrees, 3" Order

T




ow over NACA0012 Airfoll — Hybrid Mesh
Mach = 0.3, o = 5 degrees, 4t Order

T

O

Pressure




Flow over NACAOO012 Airfoil — Hybrid Mesh
Wall entropy error
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Inviscid Flow Over 1/4 Sphere

e Freestream: M= 0.3

e Numerical Methods:
- LCP (2nd-4th order)
- 3 stage Runge-Kutta / * Prism mesh:
LU-SGS Points 49x31=1519, Cells 80x30=2400
- Curved wall treatment
(quadratic polynomials)




Prism Mesh for 1/4 Sphere

e .

—

oAl
-l

oints 49x31=1519

Cells 80x30=2400

__



Tetra-Prism Mixed Mesh for 1/4 Sphere

¢ Prism: Points 49x6=294, Cells 80x5=400
e Tetra: Points 512, Cells 2026

] ,




Density Contours (LCP-DG, Prism)
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Density Contours (LCP-DG, Tetra & Prism)
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fonclusions and Future Work

A lifting collocation penalty formulation is
successfully developed for simplex cells, which

IS a generalization of the flux reconstruction
method;

<+ The formulation unifies the DG, SV and In a
special case the SD method into a single family;

« Weighting functions disappear from the
formulation. Their effects are implicitly
embedded in the lifting coefficients;




iConcIusions and Future Work (cont.)

The extension to mixed grids and curved
boundary straightforward because no surface or
volume integrals involved

< Accuracy studies and benchmark test cases
demonstrated the performance of the method

« The extension to the Navier-Stokes equations
are under way and will be reported in the future.
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