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１． Background and purpose of the project, 

relationship of the project with other projects 

The normal diffusion of an ideal massless Brownian 

particle is usually associated with the Gaussian 

distribution of its spatial displacements. However, 

there are no fundamental reasons why the diffusion 

of a physical Brownian tracer should be of the 

Fickian type[1]. For instance, displacement 

distributions in real biophysical systems appear to 

retain prominent exponential tails, even after the 

tracer has attained the condition of normal diffusion. 

Such an effect, often termed non-Gaussian normal 

diffusion (NGND), disappears only for exceedingly 

long observation times (possibly inaccessible to real 

experiments [1]), when the tracer’s displacement 

distribution eventually turns Gaussian, as dictated 

by the central limit theorem. Persistent diffusive 

transients of this type have been detected in 

experimental and numerical setups. The signature of 

NGND, along with a non-Gaussian velocity 

distribution, has been previously reported in systems 

with spatial heterogeneity. The current 

interpretation of such diverse NGND manifestations 

as transient effects postulates the existence of one or 

more slowly fluctuating processes affecting 

composition, geometry, and dynamics of the tracer’s 

environment. 

When investigated collectively, a suspension of 

active particles may undergo phase separation even 

in the absence of cohesive forces [2-3]. The ensuing 

motility-induced phase separation (MIPS) is 

arguably the simplest nontrivial collective feature 

that distinguishes active from passive particles [30]. 

MIPS involves the coexistence of two active phases of 

different densities, similarly to what happens in a 

binary fluid mixture below its critical temperature. 

It occurs as a combined effect of steric interactions 

and self-propulsion, even in the absence of pair 

alignment, interactions with solid substrates, or 

thermal fluctuations [2-3]. Experimental evidence of 

MIPS has been obtained both in biological and 

synthetic systems, despite numerous technical 

difficulties. Among the quantitative tools employed 

to numerically characterize MIPS, diffusivity offers 

arguably the most direct access to the microscopic 

dynamics underlying phase separation. The 

asymptotic diffusion constant has been computed 

as an overall indicator of both gas-liquid [2] and 

liquid-solid separation [4]. Diffusivity was utilized 

also to analyze the inner structure of the separating 

clusters [3].  

We have demonstrated that diffusion in an 

athermal active suspension under MIPS may provide 

a more predictive tool than previously reported. To 

avoid more complex phase diagrams, we restrict our 

investigation to a two-dimensional (2D) suspension 

of active hard disks. Such disks undergo normal 

diffusion no matter what the suspension phase. 

Upon increasing the suspension packing fraction 

with uniform initial particle distribution, the 
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diffusion constant exhibits a sharp drop, which we 

interpret as the gaseous phase spinodal. However, 

slowly ramping up and down the overall packing 

fraction, produces a robust hysteresis loop delimited 

by the binodal and spinodal of the gaseous phase. 

Vice versa, within our numerical accuracy, the 

binodal region of the dense phase appears to collapse, 

so that no hysteretic diffusion loop was observed. 

Moreover, in the presence of MIPS, the 

corresponding particle displacement distributions 

are leptokurtic for extended time transients (i.e., 

tend to zero slower than a Gaussian function), a 

clear-cut NGND manifestation. 

２． Specific usage status of the system and 

calculation method 

This fiscal year, we used the Hokusai supercomputer 

mainly for numerically studying diffusion transients 

associated in motility-induced phase separation. To 

be specific, we focus to determine spinodal points 

and binodal regions using self-diffusion as a tool. 

Details of our simulation results are presented in the 

next section. We employed the following methods to 

explore intriguing features of motility-induced phase 

separation (MIPS).  

Theoretical and simulation method 

We simulated a two-dimensional suspension of N 

identical achiral active Janus particles [5]  modeled 

as disks of radius r0 and constant self-propulsion 

speed v0, in a square box of size L with periodic 

boundary conditions. The dynamics of a single JP of 

coordinates r = (x, y) obeys the simple Langevin 

equations, 
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Here, the orientation of the self-propulsion vector v0 

=v0(cosθ, sinθ), measured with respect to the 

longitudinal x-axis, fluctuates subjected to the 

stationary, delta-correlated noise source ξθ(t), with 

〈ξθ(t)ξθ(0)〉=2δ(t). Following Ref. [2], the suspension 

is assumed to be athermal, that is, we neglect 

thermal fluctuations against the angular noise 

intrinsic to the self-propulsion mechanism [6-9]. The 

reciprocal of Dθ defines the correlation time, τθ , and 

the persistence length, lθ = v0/Dθ of a free 

self-propelled Janus particle (JP). For t >> τθ a free 

JP would undergo normal diffusion with diffusion 

constant Ds = v20/2Dθ, but non-Gaussian statistics. 

We assume that at short distance the disks repel 

each other via the truncated Lennard-Jones 

potential.  

The coupled stochastic differential equations (2) 

were numerically integrated by means of a standard 

Milstein scheme to obtain particle position as a 

function of time. Then, we numerically calculated 

local density distribution, packing fraction of the 

different phases, transition points (spinodal and 

binodal), self-diffusivity of the particles, and 

displacement distribution. The numerical 

integration was carried out using a very small time 

step, 10-3 -10-4 to ensure numerical stability. We 

assume initially that the particles were randomly 

distributed in the simulation box with random 

orientation of the self-propulsion velocities. Mean 

square displacement, P(x,t), and the  diffusion 

coefficient here were obtained by  averaging over 

104 trajectories. One part of this project has been 

completed, and the results have been published. 

However, additional simulation work is necessary to 

understand the related features mentioned in the 

future plan. 

3. Results 

Self-diffusion and motility induced phase-separation 

-- To characterize the underlying features of MIPS, 

we choose particles self-diffusion as a quantifier. We 

simulated mean square displacement as a function of 

time, and from there, we extracted the diffusion 

constant in the long time limit. This constant is a 

function of the average packing fraction of the 

system. A sudden diffusivity drop marks phase 

separation. This MIPS signature is sharp enough to 

determine gas spinodal as a function of 

self-propulsion velocity. As apparent in Figs. 1(b), 

1(c), 2(c), and 2(d), no MIPS occurs for v0 
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Fig1: Particle mean-square displacement (MSD) in a 

suspensions of N active JP’s of radius r0 = 1 and 

persistence time τθ = 100; N = 9120. Packing fraction 

φ̅  (defined as πr0
2N/L2 ) was varied by tuning 

simulation box size at fixed N. If not stated 

otherwise, the suspension was initially randomly 

uniform. (a) MSD, 〈∆x2〉 , vs t for v0 = 1 and 

different  φ̅ . The short-time ballistic and the 

asymptotic diffusive branches are fitted respectively 

by quadratic, Bt2, and linear, 2Dt, functions. The 

fitting parameters D (in units of Ds = v20/2Dθ) are 

plotted in (b) vs φ̅. The fitting parameters B (in 

units of Bs = v20/2) vs φ̅ with different v0 (see legend) 

are plotted in (c). The dashed lines in (b) and (c) 

depicting the φ̅ dependence of D/Ds and B/Bs (for v0 

= 1) are fitted by the functions in the legends. 

Crosses in (b) display Eq. (2). 

 

below a critical value, v0
∗< 0.25, while forv0 > v0

∗ the 

dependence of φ∗ on v0 is rather weak. Similarly, 

Fig. 2(d) shows that for a given v0 there exists an 

upper bound for the angular diffusion constant Dθ , 

above which MIPS does not occur. 

In the homogeneous phase, the fitting ballistic, B, 

and diffusion, D, constants of Fig. 1(a) appear to 

slowly decrease with increasing φ̅ up to the MIPS 

onset, φ̅  = φ∗. Standard stoichiometric arguments 

suggest polynomial fitting laws, 

  D = Ds(1 − λDφ̅)2 and B = Bs(1 − λBφ̅)   −  − − (2) 

with Ds = v0
2/2Dθ  and Bs = v0

2/ 2.Both fitting 

parameters λB [in Fig. 1(c)] and λD [in Fig. 1(b)] are 

larger than the reciprocal of the close-collisional 

packing fraction, φcp = p/4. MIPS drops of the curves 

B(φ̅) are apparent, in quantitative agreement with 

the existence of a critical value v0
∗ , below which 

MIPS is ruled out [see Figs. 2(c) and 2(d)]. 

To analyze the tails of D(φ̅) for φ̅ > φ∗, we had 

recourse to the two-phase characterization of Figs. 

2(a) and 2(b) (also for v0 = 1). After exceedingly 

long simulation runs, t = 105, the dense and dilute 

phases of the suspension appear to be well 

separated. We computed the volume, αi, and 

number, hi, fractions of both phases and the 

resulting phase packing fractions, i (i = g, c 

denoting, respectively, the gaseous and the dense 

phases). To this purpose we first computed the 

corresponding phase densities ρi, by selecting 

rectangular regions (as large as possible) within 

either phases and then counting particles in there. 

This procedure was repeated 10 times for different 

“trajectories,” namely initial configurations and 

random number sequences. This way we 

estimated the phase mean densities as well as 

their standard deviations (under the simplifying 

assumption that both phases were homogeneous). 

Finally, we computed the phase areas, Ai, by 

imposing the two normalization conditions ρcAc + 

ρgAg = N and Ac + Ag = L2.    

By definition, 𝜑𝑖 =  𝜑̅
𝜂𝑖

𝛼𝑖
, as numerically checked 

in Fig. 2(a). The densities of the two phases are  
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FIG.2. Gaseous and dense phases (denoted 

respectively by the indices i = g, c): 𝜑̅ dependence of 

(a) the phase number, ηi, and volume, αi, fractions 

and (b) the phase packing fractions, φi, for N = 104, v0 

= 1, τθ = 100, and random uniform initial conditions. 

As a consistency test, we fitted the data for αi and φi 

with straight lines [dashed lines respectively in (a) 

and (b)] and made use of the identity, 𝜑𝑖 =  𝜑̅
𝜂𝑖

𝛼𝑖
, to 

reproduce the φ¯ dependence of ηi in (a). Fitting 

functions: αc = 1.5𝜑̅ − 0.14, φc = 0.75, and φg = 0.09. 

Recall that αg + αc = 1 and ηg + ηc = 1. (c) Cluster, φc, 

gaseous phase, φg, and MIPS onset,  𝜑∗  and 𝜑∗∗ , 

packing fractions vs v0 for 𝜑̅ = 0.45. For v0 < v0
∗ 

MIPS never occurs, while for v0 > v0
∗  our data 

suggest that 𝜑𝑐
(𝑠)

+ 𝜑𝑔
(𝑠)

= 1. (d) Gaseous and cluster 

phase binodal, φg and φc, vs Pe = 3v0/(2r0Dθ ) for N = 

9, 120, v0 = 1(blue symbols), and Dθ = 10−2 (red 

symbols).  

 

confirmed to be independent of 𝜑̅ . On neglecting 

the contribution from the particles trapped in the 

cluster, the self-diffusion constant for 𝜑̅ > 𝜑∗ can 

be approximated to [10], 

𝐷𝑀𝐼𝑃𝑆(𝜑̅) = 𝛼𝑔𝐷𝑔𝜂𝑔(1 − 𝜆𝐷𝜑𝑔)2 

Here, we made use of the fact that the gaseous phase 

represents a fraction g of the suspension and 

behaves as a homogeneous phase with low packing 

fraction φg and fractional volume αg. A comparison 

with the actual D data for v0 = 1 is displayed in Fig. 

1(b). 

(2) Hysteresis loops:  spinodal and binodal points  

By starting with a uniform particle distribution we 

never observed MIPS in the range 𝜑̅  ∈ [𝜑𝑔, 𝜑∗] , 

regardless of the (accessible) running time. The 

outcome changed when we slowly increased 

(decreased) 𝜑̅ over time. We did so by keeping N 

fixed and decreasing (increasing) L stepwise after a 

fixed long running time t (typically t = 5 × 104). 

Upon varying L, we rescaled the suspension 

configuration accordingly. This produced the 

hysteresis loops of Fig. 3(a), which, for large N, 

approach the ideal loop obtained by connecting the 

fitting functions of D vs 𝜑̅ in Fig. 1(b) [also see Eqs. 

(3) and (4)]. On increasing 𝜑̅ , MIPS occurs, as 

anticipated above, at 𝜑̅  (signaled by a D drop), but 

upon decreasing it only disappears for 𝜑̅ ≥ 𝜑𝑔 

(signaled by a fast D rise). 

To check robustness of the hysteretic effect toward 

translational noises, we simulate Eq. (1) after adding 

a 2D translational Gaussian noise term with 

strength D0. . The hysteresis loop of Fig. 3(a) there 

turned out to be quite robust; indeed, it appeared to 

vanish only for D0 of the order of Ds. Vice versa, its 

area may be quite sensitive to the suspension size, N 

Recall that our hysteresis protocol 𝜑̅  was 

increased/decreased stepwise at regular time 

intervals t. Of course, we cannot rule out the 

possibility that the resulting hysteresis loop shrinks 

and finally disappears for exceedingly large t (in any 

case, well beyond our computing capabilities). 

Similar remarks apply to even simpler dynamically 
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bistable systems, such as the motility of a weakly 

damped, driven Brownian particle confined to a 

one-dimensional washboard potential. For the 

suspension of Fig. 3(a), we repeatedly looped 𝜑̅ in 

the range (0.05, 0.30), that is, across the relevant 

binodal and spinodal of the gaseous phase. 

 As we verified that the hysteretic effect is robust 

toward translational noises, it has also been noticed 

that hysteresis loops become sharper upon 

increasing the suspension size, N, and the 

observation time, t. In conclusion, accurate data for 

the D(φ) hysteresis loop suffice to self-consistently 

characterize the gaseous binodal region at fixed v0. 

Further, the persistence of uniformly distributed 

short-time aggregates in the suspensions with 𝜑̅ ≤

𝜑∗ , suggests interpreting 𝜑̅  as the gaseous phase 

spinodal, 𝜑̅ = 𝜑𝑔
(𝑠)

. 

 A similar approach was adopted by simulating 

initially homogeneous, dense suspensions and 

decreasing 𝜑̅ below φc: at a sufficiently low value of 

the overall packing fraction, 𝜑̅ = 𝜑∗∗ < 𝜑𝑐, the dense 

suspension developed coalescing gaseous bubbles. 

Therefore, the curve 𝜑∗∗ versus v0 displayed in Fig. 

2(c) is our best estimate of the cluster spinodal, 𝜑𝑐
(𝑠)

 . 

As illustrated in Fig. 3(b), at 𝜑̅ = 𝜑𝑐
(𝑠)

 , the curves D 

versus 𝜑̅ exhibit a second drop, though not as sharp 

as at 𝜑̅ = 𝜑𝑔
(𝑠)

, but no hysteretic loop. In fact, cluster 

binodal and spinodal curves. run so close to one 

another that we could hardly separate them; the 

upper binodal region appears to collapse (see Ref. for 

an analytical treatment). Remarkably enough, our 

numerical data suggest that 𝜑𝑐
(𝑠)

+ 𝜑𝑔
(𝑠)

= 1. As v0 

approaches v0
∗ (from above), both upper and lower 

pairs of binodal and spinodal curves overlap (for 

details see []). 

4. Conclusion 

We characterized MIPS of an athermal, achiral 

active suspension by looking at the particle 

diffusivity under steady-state conditions. The 

choice of using the overall suspension packing 

fraction as tunable parameter has a practical 

 

FIG. 3. (a) Hysteresis loop obtained by slowly 

ramping 𝜑̅  up and down across the gaseous 

binodal-spinodal range for v0 = 1 with different N 

(see legends). The reference hysteresis loop (dashed 

blue curve) has been closed by extending the lower 

fitting curve, DMIPS(𝜑̅), in Fig. 1(b) down to 𝜑̅ = φg. 

(b) D vs 𝜑̅ in the upper binodal region for different 

v0 and N = 20 000. For v0 = 1, D was determined as 

in (a), by ramping 𝜑̅ up (dots) and down (crosses); 

no hysteresis loop was detected, as the upper binodal 

region appears to collapse. 

motivation, as in most applications the particle 

motility cannot be varied at will, while their 

density can. Particle diffusion under phase 

separation has been proven to show hysteretic and 

NGND properties. Our main conclusions are (1) 

The hysteresis loop of the curve D(φ) in the lower 

binodal region, which allows a direct measure of 

𝜑𝑔  and 𝜑𝑔
(𝑠)

. 

(2) The peculiar properties of the upper binodal 

and spinodal curves, which appear to overlap, 

thus suppressing hysteresis in the upper binodal 

region. Our numerical data also suggest a mirror 

symmetry of the spinodal curves with 𝜑𝑐
(𝑠)

+ 𝜑𝑔
(𝑠)

=
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1. 

(3) Non-Gaussian normal diffusion characterized 

motility induced phase separation with 

leptokurtic transient distributions of 

displacements  x. The associated NGND 

transient time is almost four orders of magnitude 

larger than the rotational relaxation time of a free 

JP. Further, we show that NGND characterized 

MIPS also in the presence of hysteresis 

5. Schedule and prospect for the future 

In the upcoming fiscal year, we intend to investigate 

issues that emerged during the current fiscal year's 

research work. Our detail analysis of motility 

induced phase separation [Phys.Rev.Research 7, 

013153 (2025)] raised the following issues: 

(a) When the system’s average packing fraction 

crosses the critical threshold known as the spinodal 

point, a large single cluster is formed in the 

thermodynamic limit. However, distinguishable 

phases can be easily achieved when the 

self-propelled velocity and persistence length (or, 

alternatively, the Péclet number) are much larger 

than their critical threshold values. The structure 

around the critical velocity (v0*) or Péclet number 

(Pe*) is not well understood. Even over long time 

periods, small clusters do not collapse into a single 

large cluster. To gain a better understanding of the 

structure and dynamics near the transition point, we 

plan to numerically calculate the number of clusters 

and their sizes as a function of time. Additionally, we 

will analyze density fluctuations and the structure 

factor to characterize the structural heterogeneity. 

(b) Most previous studies on motility-induced phase 

separation have focused on systems of active 

swimmers where all the particles have the same 

self-propulsion velocity, persistence length, and 

intrinsic torque. However, in both artificial and 

natural systems, while individual particles may be 

similar, their self-propulsion properties can vary. 

Considering such realistic situations, we aim to 

explore the motility-induced phase separation 

(MIPS) properties of a system consisting of different 

types of self-propelled particles. Specifically, we will 

examine a system where self-propulsion velocity, 

intrinsic torque, and rotational diffusion are 

distributed over a range. 

(c) Despite considerable effort, the structure and 

diffusion of systems with active particles remain 

poorly understood. To explain the experimentally 

observed features of various natural 

micro-swimmers, different types of interactions have 

been proposed. Recently, researchers have suggested 

that non-reciprocal interactions among the particles 

could help explain the collective behaviors of these 

micro-swimmers. Preliminary studies indicate that 

both the dynamics and structural mechanisms are 

significantly influenced by the nature of these 

non-reciprocal interactions. Building on previous 

research regarding non-reciprocally interacting 

active particles, we plan to explore a protocol in 

which individuals adjust their chirality by sensing 

the particles around them.    

To address the issues mentioned above, we will 

utilize the numerical methods described in Section 2. 

We request an extension of our access to the 

computation facilities for the next usage term, 

continuing until March 31, 2026, under the same 

user category and project title. 
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