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１． Background and purpose of the project, 

relationship of the project with other projects 

DFT has been the workhorse of computational 

chemistry. Yet, its full potential has not been 

reached after decades of development. 

As the first principle pursue of the so-called 

“exact DFT” remains elusive, the continuous 

progress of DFT relies on statistical and 

machine-learning techniques. Indeed, this has 

become the norm in DFT research for some time. As 

with science and technology in other areas that rely 

on “training” with big data, the quality of the data 

plays an important role. 

Regarding data set quality, current DFT methods 

are often formulated with a narrowly focused set of 

chemical species and molecular properties; major 

data sets include almost exclusively light p-block 

species, and they cover just 15% of the periodic table. 

As a result, the thus formulated DFT often suffer 

from “overfitting”, i.e., they cannot adequately treat 

systems that do not belong to the types in the 

training data. Naturally, this would severely hinder 

the application of DFT. 

In this project, we will devise strategies to 

improve the robustness of new DFT methods by 

diversifying the range of data used in the 

formulation of DFT. Specifically, we aim to expand 

the data sets to cover the periodic table. 

２． Specific usage status of the system and 

calculation method 

This project employs the Gaussian and Q-Chem 

programs on Hokusai BW, as well as a wide range of 

standard quantum chemistry software packages 

such as Molpro, MRCC, and ORCA.  They enable us 

to access a diverse range of quantum chemistry 

methodologies, including highly accurate coupled- 

cluster and multi-reference methods with which 

reference data are obtained, and DFT methods with 

which insights into the fundamentals of a reliable 

DFT can be revealed. 

Regarding the computational determination of 

reliable reference data, we have previously 

diversified from light p-block species to cover s-block 

elements, as well as transition metal species that are 

more challenging for theoretical methods than the 

systems that have been considered by us and others. 

In addition, within p-block species, we note that 

most data sets focus on molecular species, with little 

attention given to nano-sized and bulk materials.  A 

key reason is the excessive computational resources 

required for their calculation.  As we have 

previously developed substantially lower-cost yet 

reliable methods, we apply them to larger nano-sized 

systems to complement existing molecular data. 

With the new data sets, the assessment of DFT is 

trivial in comparison, and we have carried out such 

benchmarking in each case.  Including in our 

assessments are a small but representative 

collection of DFTs that are orthogonal to one another 

in their formulations.  Such distinct differences in 

their natures enables straightforward identification 

of key ingredients that are important for the 

different classes of chemical systems; this facilitates 

the future development of more reliable methods. 

３． Result 

To acquire reliable data for DFT development, it is of 

utmost importance that the reliability of the 

reference data can be verified in the first place.  In 
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our work, while we use the most advanced quantum 

chemistry methods that are computationally viable, 

this is by no means a guarantee of accuracy. 

More generally, this has been a long-standing 

issue of computational chemistry. Numerous 

“diagnostics” have been previously proposed by many 

research groups to gauge the reliability of the 

quantum chemistry method. However, the 

diagnostics themselves are not fully reliable. In 

many cases, they are also being misused. 

In one of our works within FY2024, we have 

illustrated how several most popular diagnostics are 

misused. Specifically, the A25 and %TAE metrics are 

designed with and for analyzing the accuracy of the 

high-level CCSD(T) method for small molecules. 

However, they are often applied to medium-sized 

and large molecules, including practically relevant 

systems such as nano-materials and proteins. 

We have conducted several case studies using 

such systems to demonstrate that how these 

diagnostics should not be applied to these large 

systems with heterogeneous regions. Such systems 

often contain regions that can be accurately 

computed with CCSD(T), as well as some regions for 

with CCSD(T) may be inadequate. 

The A25 and %TAE diagnostics leads to false 

negative in these situations, which in turn may lead 

to acceptance of unreliable reference data in the 

literature. To remedy this drawback, we have 

proposed a protocol of combining A25 and/or %TAE 

with another recently developed diagnostic (N_FOD), 

which shows the opposite behavior to A25 and %TAE, 

and thus provides a more balanced analysis. 

While it is important to be aware of the quality of 

the reference data in DFT development, to broaden 

the scope of DFT also requires a large amount of 

data for a wide range of chemical systems and 

properties. The extreme efforts are required in the 

computation of high-quality data using CCSD(T) or 

even higher-level methods. Thus, the use of some 

low-quality data may be unavoidable. 

A key question that arises from this reality is how 

the use of low-quality data affects the quality of the 

trained DFT. This issue is becoming increasingly 

important as the development of DFT increasingly 

uses machine-learning techniques with enormous 

data sets. While the principle of “garbage-in- 

garbage-out” is well appreciated, the actual effect 

has never been precisely quantified. 

In another key project of FY2024, we have filled 

this knowledge gap. We have synthesized a collection 

of data sets with systematically varying degrees of 

quality; using these synthetic data, we have 

formulated a variety of DFT methods and measured 

their accuracy in the prediction of chemical 

properties for a diverse set of molecules. 

We find that, encouragingly, for DFT methods 

with a sound physical foundation and a minimal 

number of trained parameters, the use of a relatively 

low-quality data set (with an average uncertainty of 

~20 kJ mol–1, 5 times larger than the chemical 

accuracy threshold) does not lead to a significantly 

worse trained method. In fact, if the use of 

low-quality data improves the chemical diversity, it 

benefits the generality of the resulting DFT. 

In relation to this last point, in another work of 

FY2024, we have further established the 

“transferability principles” to gauge the degree of 

diversity of a data set. In additional, we have 

continued to expand our endeavor in producing 

high-quality data that have yet to be covered. This 

includes, for example, the new LiCT set of 

thermochemical data for metal clusters. 

４． Conclusion 

Our provision of high-quality data expands the scope 

of DFT development.  Our new venture into the 

discovery of requirements for DFT development in 

the age of machine-learning provides a clearer 

direction for further development. 

５． Schedule and prospect for the future 

The development of a universal DFT has a long road 

ahead. We will further this by continue to provide 

independent reliable data and unravel the best 

development strategy in this machine-learning era. 
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