The neural mechanism of vision and memory in the human brain and network analysis of fruit fly connectome

Name: • Pui Chuen TAM (2), Chris Hak-wan Lau (1), Alexei Joel Dawes (1), Ali Moharramipour (1), Yijun Ge (1), Qi Lin (1), Hin Ming Matthew Leung (1), Gabriel Emanuel Stanislav Germann (1), Ka Yuet Liu (2)

Laboratory at RIKEN:

(1) RIKEN Center for Brain Science, Laboratory for Consciousness(2) RIKEN Center for Brain Science, Laboratory for Neural Stem Cell Research

1. Background and purpose of the project,	vision project]
relationship of the project with other projects	For this project, we used Hokusai for running
In the current project, we aim to investigate the role	permutation tests.
of prefrontal cortex (PFC) in visual perception using	Collectively, these two projects used ~1,500,000
neuroimaging and tools from machine learning	hours on bwmpc and ~ 7000 hours on gwacsl (for
models such as deep convolutional neural networks	manipulating large matrices).
and generative adversarial networks. In addition,	3. Result
we aim to study the fruit fly brain connectome using	3.1 PFC-DNN project
network analysis. The PFC has been found to be	We found that we can indeed predict how a human
critical for conscious perception and high-level	observer's PFC will respond to a new image by just
cognition (such as cognitive control, planning). The	identifying the relevant features in the image
dysfunction of it has also been implicated in a	without actually measuring their brain activity.
variety of psychiatric disorders, most notably in	3.2 PFC peripheral vision project
schizophrenia. Cracking the computational codes	We found that PFC activity predicts whether a
employed by the PFC will be an important step	participant experiences a visual illusion in the
towards understanding how the brain works. Finally,	periphery.
understanding the network structure of the fruit fly	4. Conclusion
brain would also enable us to know more about	Collectively, the results above highlight the critical
human brain network.	role of PFC in visual perception, a previously
2. Specific usage status of the system and	underappreciated aspect of PFC functioning.
calculation method	5. Schedule and prospect for the future
In FY 2022, we primarily used Hokusai for two lines	For the PFC-DNN project, we are moving onto the
of work :	next stage of generating images to maximally
2.1 Predicting how the PFC will respond to novel	engage the PFC using generative neural networks.
images using deep neural networks (DNN) [PFC-	We expect to have results worthy of publication in 6
DNN project]	months.
For this project, we used Hokusai for: storing the	For the PFC peripheral vision project, we will use
data/DNN models, extracting activations from	the cluster for additional permutations tests to
DNNs, building regression models and running	establish the statistical reliability of our results.
permutation tests.	
2.2 Investigating how the PFC contributes to visual	6. If no job was executed, specify the reason.
illusion in the visual periphery [PFC-peripheral	N/A