Project Title:

Crystal Structure Prediction and High-temperature Superconductivity of Li-RE-H System at High Pressures

Name:

Yanming MA (1), Ryotaro ARITA (1), OToshiaki IITAKA (2) Laboratory at RIKEN: (1) RIKEN Center for Emergent Matter Science, First-Principles Materials Science Research Team, (2) RIKEN Center for Computational Science, Discrete Event Simulation Research Team

1. Background and purpose of the project, relationship of the project with other projects

The search for room-temperature superconductivity has been a long-standing scientific endeavor ever since Heike Kamerlingh Onnes discovered in 1911 that mercury could conduct electricity without resistance below a critical temperature around 4 K. Twenty-four years after the discovery of this phenomenon known as superconductivity, Wigner and Huntington proposed that molecular hydrogen could undergo a phase transition into an atomic metallic hydrogen (AMH) phase at high pressures, which attracted great interest, especially after the conjecture of its ability to host very hightemperature superconductivity. Creating AMH, however, has proven extremely challenging due to the stringent synthesis and characterization conditions at very high pressures, currently recognized to be above 500 GPa. An early study found that hydrogen-rich metal hydride Th₄H₁₅ was superconducting with a critical temperature T_c of 8 K at ambient pressure; later studies found that chemical substitution or doping could stabilize hydrogen-containing compounds that may host metallic and superconducting states approaching that of AMH. This line of work has been actively pursued after the conceptual development of using chemical precompression to facilitate the formation of hydrogen-dominant metallic alloys that host phonon-mediated high-temperature superconductivity.

Recent years have witnessed concerted efforts of exploring routes to achieving high- T_c superconductivity in pressure-stabilized metal hydrides (e.g., refs 13-16). Following the theoretical predictions of stabilizing H₂S and H₃S at high pressures, a high T_c of 203 K at 150 GPa was documented experimentally. A different class of binary high-T_c metal (M) hydrides based on clathrate structure having stoichiometry MH₆ was predicted, led by the theoretical prediction on CaH₆. Further efforts to reach higher T_c led to the prediction and discovery of superhydrides with stoichiometries MH_n with n > 6. These efforts culminated in the experimental realization of superconducting LaH₁₀ with a T_c of 250–260 K at pressures of 170–190 GPa, followed by YH₉ with a T_c of 243 K at 201 GPa and YH₆ with a T_c of 220 K at 166 or 237 GPa. Very recently, the long-missing clathrate structured CaH₆ predicted in 2012 was successfully synthesized in the laboratory with a measured T_c of 215 K at 170 GPa. Other notable cases of clathrate structured high- T_c hydrides include YH₁₀, Li₂MgH₁₆, and CaYH₁₂ from theory, and ThH₉ and ThH₁₀ from experiment.

An overriding idea underlying all of these efforts is to raise the hydrogen content while at the same time ensuring that the combination of compression chemical interactions are favorable to promote the H_2 molecules in the dense structure to create material configurations closely resembling AMH in bonding environments. In this regard, a major task has thus been to find superhydrides with proper electron-rich heavy atoms that are capable of stabilizing hydrogen in a nonmolecular form to generate T_c exceeding that of the established superhydrides such as LaH₁₀.

Recent studies showed that rare-earth (RE) and actinide (An) elements are capable of maintaining

significant hydrogen by forming high-pressure clathrate compounds with a very high T_c . These results raise the exciting prospects of finding RE/An superhydrides containing even higher hydrogen content and hence further increased T_c that may approach or even exceed room temperature. Based on these considerations, we have explored electron-rich rare-earth and actinide elements that provide electrons to dissociate molecular hydrogen, thereby creating an AMH-like environment conducive to harboring high-Tc superconductivity. Using our developed structural search algorithms, we uncovered a new class of hydrogen-superrich compounds with stoichiom-etry MH_{18} (M = RE or An atom). These extreme superhydrides exhibit unique clathrate atomic H_{36} cages with bonding environments similar to that predicted for AMH. First-principles calculations for different MH₁₈ superhydrides predict diverse T_c values among the same stoichiometry that offer insights into the effect and nature of chemical precompression. Notable among these extreme superhydrides are CeH₁₈ and ThH₁₈ that exhibit above-room-temperature T_c near 330 K at 350 GPa and 321 K at 600 GPa, respectively, which represent the highest T_c values among all hitherto known thermodynamically stable superhydrides. The results of this study provide a wealth of information on material behaviors and key physics and chemistry insights that allow an in-depth study of the factors with major influence on achieving ultrahigh-temperature phonon-mediated superconductivity in hydrides, thereby opening a path for creating binary and multinary high- T_c superhydrides that can operate at or even above room temperature.

Besides, a recent work claimed possible roomtemperature superconductivity in the C–S–H system, but the structure and stoichiometry of the synthesized material remain unclear and require further investigation. we performed crystal structure searching of the C–S–H system at 300 GPa via our inhouse developed CALYPSO prediction methodology. A series of metastable crystals were identified with T_c values 156 K. The coordination number of the C and S atoms in compressed C-S-H crystals are four and six, respectively, with the formation of CH₄ and SH₆ molecules, and the remaining H atoms form H₂ molecules in pairs. The formation of molecular crystals is the fundamental reason for such poor superconductivity. Besides, we searched for groundstate structures of C-doped Im3m-H₃S using the first-principles cluster expansion method. Superconductivity of $C_x S_{1-x} H_3$ (x = 0.0625, 0.083, and 0.10) was estimated using primitive cells containing 40-64 atoms. The doping was found to lower the density of states at the Fermi level and then decrease the T_c values accordingly. Our results provide a comprehensive map between the crystal structure and superconductivity of carbonaceous sulfur hydride materials at high pressures, which might offer a valuable reference for further exploring the superconducting mechanism.

2. Specific usage status of the system and calculation method

During the fiscal year 2022, 3.6 million CPU hours were used to investigated hydrides with high superconductivity in all these two project. We employ our developed swarm-intelligence-based CALYPSO structure prediction method, which is designed to search for the stable structures of given compounds, for the investigation of phase stability of C-S-H compounds at 300 GPa and RE-H compounds at 400 GPa. For most cases, the structure search for each chemical composition converges (evidenced by a lack of any additional structure with lower energy) after 1000~1200 structures were investigated. The stability of different energetic ternary stoichiometries is evaluated by their formation enthalpy of dissociated into the most competing element and binary compounds. The underlying energetic calculations are performed with the plane-

wave pseudopotential method as implemented in the VASP The code. Perdew-Burke-Ernzerhof generalized gradient approximation is chosen for the exchange-correlation functional. The phonon spectrum and electron-phonon coupling (EPC) of the stable compounds are calculated within the framework of linear response theory through the Quantum-ESPRESSO code, where ultrasoft pseudopotentials were used with a kinetic energy cutoff for wavefunctions of 80 Ry and a kinetic energy cutoff for charge density and potential of 1000 Ry. Electron-phonon couplings (EPC) constant λ , ω_{log} , and $T_{\rm c}$ are solved using the elk code, as derived by the direct solution of the isotropic MigdalEliashberg equation.

3. Result

3.1 Room-temperature superconductivity in compressed RE-H compounds

We performed structure searches in binary hydrides MH_m (m = 2-24) over a wide range of hydrogen contents to predict stable structures, with a sharp focus on hydrogen-superrich phases. Particularly noteworthy was the finding of new stoichiometric Ce and Th extreme superhydrides Ce/ThH₁₈ stable at experimentally accessible pressures around 300 GPa after the zero-point energy (ZPE) was considered. Specifically, CeH_{18} and ThH_{18} become stable at reduced pressures of 315 and 281 GPa, respectively (see Figure 1a,b), making the experimental synthesis and characterization feasible. It is noted that these newly predicted extreme superhydrides possess higher $T_{\rm c}$ with competing synthesis pressure compared to the previously proposed high- $T_{\rm c}$ binary superhydride YH₁₀, which was not successfully synthesized in a recent experiment. A recent work reported that materials synthesis could be achieved near terapascal pressures, making it feasible to realize the materials predicted in this work. Further calculations for a broad range of RE and An hydride compounds up to 700 GPa reveal ubiquitous stability

of the MH_{18} stoichiometry among diverse RE and An hydrides for RE/An = Y, La, Ce, Ac, and Th (Figure 1b). Details of the computational methods for the structure search and property calculations are provided in the Supporting Information.

Figure 1. Calculated stability of predicted extreme superhydrides. (a) Calculated convex hull of newly identified extreme superhydrides CeH₁₈ and ThH₁₈, both in the *Fddd* structure, calculated with respect to decomposition into Ce/ThH₁₀ and H₂ at 400 GPa. Data points located on the convex hull (solid lines) represent species stable against possible decomposition. The open symbols correspond to metastable/unstable compositions identified by the search process. (b) Stable pressure ranges of the predicted extreme superhydrides MH₁₈ with respect to decomposition into known MH_x (x = 2, 4, 6, 9, 10, 12, 16, and 17) and *Cmca*-structured H₂; zero-point energy (ZPE) was included in the calculations.

Conspicuous in the predicted crystal structure of the MH₁₈ extreme superhydrides is the H₃₆ clathrate cage, which contrasts with the H₂₄, H₂₉, and H₃₂ structural units found in previously identified hydrides with lower hydrogen contents. The peculiar threedimensional hydrogen clathrate structure crystallizes in a unit cell with space group Fddd (Figure 2a) in which H_{36} cages are linked by a $6H_6$ ribbon-ring structure with two wrinkled H₆ hexagons above and below with bridge bonds connecting the H₆ hexagons to the $6H_6$ ribbon ring (Figure 2b,c). At higher pressures, depending on the choice of the M atom, the H₃₆ clathrate units rearrange and stabilize in another structure with space group Fmmm (Figure 2b). Below we focus our analysis mainly on CeH₁₈ to showcase its prominent properties while also

discussing key data and trends involving other MH_{18} compounds.

Figure 2. Crystal structure of MH_{18} . (a) *Fddd* and (b) *Fmmm* phase. (c) Building units of the M@H₃₆ hydrogen clathrate cage, including a $6H_6$ ribbon ring and two H₆ hexagons, which are connected by pertinent bridge bonding networks. The large and small spheres represent the metal and hydrogen atoms, respectively.

We first examine the high-pressure electronic structure of CeH₁₈. The results clearly indicate the CeH₁₈ phase is metallic with several bands crossing the Fermi level (Figure 3a, left), and hydrogen atoms make a substantial contribution to the electronic density of states (DOS) near the Fermi level, which is almost identical to the DOS contributed by the electrons from Ce (Figure 3a, right). The DOS is essentially flat around the Fermi energy, which is notably different from the DOS of LaH10, which exhibits a van Hove singularity near the Fermi energy. The calculated band structures at different pressures reveal changes in band filling; notably, the hole-bands at the X-point, along the Z-X path, and at the Y-point move down with increasing pressure, indicating a systematic pressure-driven electron transfer that suppresses T_c on further compression.

Figure 3. Electronic structures of CeH₁₈. (a) Electronic band structure (left) and projected density of states (right) of CeH₁₈ at 400 GPa. The band structures without and with the inclusion of SOC are plotted with black and red lines, respectively. (b) Phonon dispersion curves with the strength of q resolved λ_q indicated by circle size (left), phonon density of states (PHDOS), Eliashberg spectral function $a^2F(\omega)$ and EPC parameter $\lambda(\omega)$ (middle), and superconducting energy gap (right) of CeH₁₈ at 400 GPa.

Turning to the phonons and electron-phonon coupling in CeH₁₈, the calculated phonon dispersion results are shown in Figure 3b, left. No imaginary phonon modes are present in the entire Brillouin zone, indicating the dynamic stability of this crystal structure. We then computed the Eliashberg spectral function $a^2 F(\omega)$, from which the electron-phonon coupling parameter can be obtained via a simple integration in the frequency domain. The resulting integrated electron-phonon coupling parameter λ = 2.3 is guite large and comparable to that found for $H_{3}S$ ($\lambda = 2.2$). Such strong electron-phonon coupling makes various approximate weak-coupling $T_{\rm c}$ formulas generally unreliable, and an accurate description necessitates direct numerical solutions to

the Eliashberg equations. Adopting the latter method, we calculated superconducting energy gap and transition temperature and varied the Coulomb pseudopotential from $\mu^* = 0.10$ (as is typically used) to $\mu^* = 0.13$ to estimate a reasonable range of T_c values. The resulting T_c of 309-329 K (for $\mu^* = 0.10$ and 0.13) at 350 GPa, where CeH₁₈ is stable, is well above the room temperature. These results are significantly higher than the highest T_c predicted for previously reported Ce superhydrides with lower hydrogen contents (*e.g.*, $T_c = 117$ K for CeH₉) and represent the highest predicted T_c among all known thermodynamically stable superhydrides.

Figure 4. Superconducting critical temperatures of the predicted extreme superhydrides. Calculated T_c ($\mu^* = 0.10$) for selected extreme superhydrides MH₁₈ compared with the results for the $I4_1/$ amd phase of solid hydrogen at high pressures. Solid (open) symbols represent the T_c data for stable (metastable) structural phases of the indicated MH₁₈ compounds and atomic metallic hydrogen.

To elucidate the underlying mechanisms for the predicted superconductivity of these extreme superhydrides, we calculated electronic, phonon, and electron-phonon coupling parameters, and the resulting critical temperatures using the Eliashberg equations of other selected MH₁₈ compounds. We also performed identical calculations for pure AMH in the $I4_1/amd$ structure, which is predicted to be stable or metastable in the same pressure range. First, we note that systematic examination of the energetics and dynamic stability of the MH₁₈ structures beyond their

stability fields reveal meta-stability to lower of phases that maintain pressures high superconducting temperatures (Figure 1b). The pressure dependence of T_c for the identified stable and metastable phases of MH18 and I41/amd hydrogen is given in Figure 4. The T_c values are distributed over a large range, from 50 K for Fddd-AcH₁₈ at 700 GPa up to near 330 K for *Fddd*-CeH₁₈ at 350 GPa ($\mu^* = 0.10$). Moreover, the resulting critical temperatures vary considerably among the MH₁₈ superhydrides at the same pressure. The associated microscopic properties of each phase listed in Table 1 detail the differences in superconducting behavior among the compounds. The disparities within the same stoichiometry and clathrate structures stem from their characteristic vibrational frequencies, electron-phonon coupling parameters λ , and electronic DOS at the Fermi level $N(E_f)$. We also have calculated the charge transfer for CeH₁₈ and LaH₁₈, and the results show charge transfer from metal Ce/La to hydrogen atoms. The T_c values for different MH_{18} structures may also be related to the different felectron fillings, *e.g.*, there are different T_c values for different MH₁₀ superhydrides as previously reported.

The present findings offer important clues for understanding the trends in superhydride $T_{\rm c}$ values that approach that of AMH at high pressures. Among the extreme superhydrides, CeH₁₈ exhibits the highest $T_{\rm c}$ over the entire pressure range, with nearest-neighbor H–H distances of 0.85–1.17 Å, close to that of I41/amd structured AMH (1.0 Å) at 500 GPa. The calculated projected phonon DOS from the Ce and H atoms (Figure 3b) shows that the main contributions to the EPC come from the mid- and high-frequency hydrogen vibrations at 500-2500 cm⁻¹. Further, most of MH₁₈ compounds exhibit monotonically decreasing $T_{\rm c}$ with increasing pressure, the exception being both *Fddd*- and *Fmmm*-ThH₁₈ for which T_c slightly increases on compression. The decrease in $T_{\rm c}$ with pressure of most superhydrides is reminiscent of the behavior of AMH at higher

pressures (700-1,000 GPa), which is consistent with the idea that chemical precompression in hydrogen compounds shifts their material behavior toward lower pressures. These insights are helpful for continued exploration and rational design of optimal superconducting superhydrides.

Table 1. Superconductivity	of Predicted Structures ^a
----------------------------	--------------------------------------

compound	Р	λ	$\omega_{ m log}$	$N(E_{\rm f})$	$T_{\rm c}$	$T_{\rm c}(\rm SOC)$
H-I4 ₁ /amd	300	2.34	1577	0.23	339(320)	
H-I4 ₁ /amd	400	2.39	1719	0.25	383(362)	
H-I4 ₁ /amd	500	2.24	1806	0.23	380(356)	
H-I41/amd	600	2.10	1953	0.23	388(362)	
H-I41/amd	700	2.08	2021	0.25	401(375)	
YH ₁₈ -Fddd	500	1.50	1082	0.22	183(165)	
YH ₁₈ -Fddd	600	1.28	1467	0.21	176(158)	
YH ₁₈ -Fddd	700	1.10	1704	0.20	162(140)	
LaH ₁₈ -Fddd	600	0.74	1638	0.16	70(55)	
LaH ₁₈ -Fddd	700	0.78	1642	0.17	79(64)	
LaH ₁₈ -Fmmm	300	2.46	1156	0.25	271(255)	
LaH ₁₈ -Fmmm	350	1.68	1491	0.23	239(222)	
LaH ₁₈ -Fmmm	400	1.28	1649	0.22	192(174)	
LaH ₁₈ -Fmmm	500	0.82	1663	0.17	93(76)	
CeH ₁₈ -Fddd	300	2.03	985	0.27	223(207)	224(208)
CeH ₁₈ -Fddd	350	2.80	919	0.32	329(309)	330(310)
CeH ₁₈ -Fddd	400	2.32	1294	0.33	312(292)	310(290)
CeH ₁₈ -Fddd	500	1.85	920	0.27	240(212)	
CeH ₁₈ -Fddd	600	1.64	844	0.26	216(194)	
CeH ₁₈ -Fmmm	400	2.21	1260	0.22	285(265)	
CeH ₁₈ -Fmmm	600	1.76	1388	0.22	285(262)	
AcH ₁₈ -Fddd	400	0.92	1411	0.18	99(83)	
AcH ₁₈ -Fddd	500	0.80	1480	0.17	76(62)	
AcH ₁₈ -Fddd	600	0.65	1718	0.17	53(40)	
AcH ₁₈ -Fddd	700	0.62	1844	0.18	50(37)	
AcH ₁₈ -Fmmm	300	1.68	1217	0.23	206(190)	
AcH ₁₈ -Fmmm	400	1.36	904	0.20	134(119)	
$\mathrm{ThH}_{18} ext{-}Fddd$	300	1.15	1227	0.21	131(116)	
$\mathrm{ThH}_{18}\text{-}Fmmm$	400	3.39	568	0.37	296(277)	296(277)
$\mathrm{ThH}_{18} ext{-}Fmmm$	500	1.92	1573	0.40	306(284)	306(285)
$\mathrm{ThH}_{18} ext{-}Fmmm$	600	2.13	1331	0.42	321(299)	321(299)

^aCalculated pressure (P (GPa)) variation of λ , ω log (K), N (*E*f) (states/Ry/atom/spin) and T_c (K) for $\mu^* = 0.10(0.13)$ for selected MH₁₈ compounds in *Fmmm* or *Fddd* phase and hydrogen in the *I4*₁/ *amd* structure.

We consider additional effects such as spin-orbit coupling (SOC), magnetism, and electron correlation that may affect the estimated T_c of the predicted MH₁₈ compounds. We take the highest T_c extreme superhydrides CeH₁₈ and ThH₁₈ as examples to assess these effects. Our calculations reveal that the T_c values are insensitive to SOC (Table 1), which is consistent with the nearly identical band structures calculated with and without the SOC (Figure 3a). We examined the energetics of the magnetic structures of the predicted MH₁₈ compounds by considering six possible magnetic configurations (one ferromagnetic and five antiferromagnetic configurations). The results show that the nonmagnetic state is the most stable among all of the predicted MH₁₈ compounds. A recent work quantified the correlation between the forbital states at the Fermi energy with $T_{\rm c}$ for the lanthanide hydrides. These results offer insights into the reason for CeH₁₈ and ThH₁₈ hosting high T_c values due to the fact that both Ce and Th elements have less partially filled *f* electron states. Although we have not considered electron correlation effects on the EPC due to a lack of available computational tools, we note that previous studies have shown that the experimental results on several hydrides and superhydrides (e.g., those of La, Y, Th, and Ca) are well described by the theoretical results obtained within the current EPC computation scheme without considering the electron correlation effects. On this basis, it is expected that the results in the present work offer a reasonably accurate description of the superconductivity in the newly predicted MH₁₈ compounds. For other RE/An hydrides that are not discussed in this work, especially those with more filled f electron states, it is expected that the magnetic, SOC, and strong correlation effects play more prominent roles, and other hydrogen-rich superconducting hydrides cannot be ruled out. However, phononmediated superconductivity is unlikely to be the underlying mechanism in these systems, and related studies are beyond the scope of this work.

3.2 High-temperature superconductivity in C-S-H compound at 300 GPa

Based on the results from the variable-composition crystal structure searches and the cluster expansion, we constructed the ternary phase diagram of C-S-H as presented in Fig. 1(a). Unfortunately, no

thermodynamically stable C-S-H compounds were found, indicating all the ternary compounds tend to decompose into elements and binaries under certain conditions. Nevertheless, in previous highthroughput material discovery studies, the convention for the threshold between metastable (likely to be synthesized) and unstable (unlikely to be synthesized) compounds is 50 meV/atom. The same convention was adopted in this work. Therefore, metastable C-S-H compounds cannot be precluded from experimental synthesis.

FIG. 1. (a) Calculated stabilities of $C_xS_yH_z$ relative to C, S, H, and binary compounds at 300 GPa. H-rich molecular crystals and H₃S-like structures with low levels of carbon doping are presented with squares and stars, respectively. A square (or star) filling with blue or red indicates that the corresponding ternary compound is metastable or unstable. Purple circles indicate stable phases. (b) Metastable C–S– H compounds with formation enthalpies below 50 meV/atom at 300 GPa. Labels in gold or black indicate the corresponding ternary compounds are insulated or metallic.

We found that C-S-H compounds with high-H content or a low level of carbon doping are more stable than other compositions. Specifically, there are ten H-rich ternaries and four low-level C-doping compounds that are metastable with formation enthalpies lower than 50 meV/atom at 300 GPa [as shown in Fig. 1(b), formation enthalpies and structural parameters of these metastable compounds are listed in Table S1]. Among of which $P3-C_2SH_{14}$ has the lowest enthalpy of decomposition at 300 GPa [10 meV/atom above the convex hull, as shown in Fig. 1(b)]. Further pressure may help to

reduce the formation enthalpy and stabilize the new compound, calculated formation enthalpy as a function of pressure is thus shown in Fig. S1, which shows that $P3-C_2SH_{14}$ is not a thermodynamically stable structure at a wide range of pressures (200–400 GPa), and has the lowest enthalpy value of thermal decomposition of 6 meV/atom at 270 GPa. Then we focus on the crystal structures and superconductivity of the H-rich compounds.

TABLE I. Space group (S.G.), formation enthalpy (*E*, meV/atom), band gap (gap, eV), electronic density of states at the Fermi level [$N(E_f)$, states/spin/Ry/f.u.], λ , ω_{\log} (K), and T_c (K) estimated using $\mu^* = 0.10(0.13)$ for metastable C–S–H molecular crystals at 300 GPa [(M) indicates metallic phase].

Compound	S.G.	ΔE	Gap	$N(E_f)$	λ	$\omega_{ m log}$	T_c
$\overline{C_2SH_{14}}$	<i>P</i> 3	10	1.65				
CSH ₁₈	Cm	18	0.21				
$CSH_{46}(M)$	P1	32		4.62	0.97	1293	93(80)
CSH ₄₈ (M)	P1	35		7.58	1.56	1071	156(142)
CSH ₃₈	P1	36	0.27				
CSH ₂₂ (M)	P1	44		2.64	0.99	1045	78(68)
C_2SH_{18}	$P\overline{1}$	45	0.79				
C ₃ SH ₃₅ (M)	P1	46		6.59	2.47	558	156(143)
CSH ₂₄ (M)	<i>P</i> 1	47		4.34	2.09	595	138(125)
CSH ₄₄ (M)	<i>P</i> 1	50		5.51	1.50	791	113(100)

These metastable H-rich C-S-H compounds are all molecule crystals composed of CH₄, SH₆, and H₂ units. C atoms form CH₄ molecule with neighboring H atoms. The valence electron configuration of the S atom is $3s^23p^4$, which makes it not surprising that the coordination number of S is six at 300 GPa, and then results in SH₆ molecule units. Other H atoms form H₂ molecules in pairs. Such molecule crystals are usually insulators and hard to be good conductors though insulation-metal phase transition may occur under high pressure. Calculations show that C₂SH₁₄, CSH₁₈, CSH_{38} , and C_2SH_{18} exhibit nonmetallic characteristics at 300 GPa with band gaps of 1.65, 0.21, 0.27, and 0.79 eV, respectively, while the other six metastable molecular crystals are metallic with T_c _156 K (as shown in Table I). We discuss the structures and superconductivity of the most stable

C₂SH₁₄ and the highest superconducting CSH₄₈ as representatives of H-rich molecular crystals.

FIG. 2. Crystal structures of (a) $P3-C_2SH_{14}$ and (b) $P1-CSH_{48}$ at 300 GPa. The large, medium, and small spheres represent the S, C, and H atoms, respectively. CH₄, SH₆, and H₂ molecules are building units that form these two molecule crystals. Electronic band structure (left panel) and projected density of states (right panel) of (c) $P3-C_2SH_{14}$ and (d) $P1-CSH_{48}$ at 300 GPa. © Phonon dispersion curves with the strength of q resolved λ_q indicated by circle size, projected phonon densities of states (PHDOS), isotropic Eliashberg spectral function $a^2F(\omega)$ and EPC parameter $\lambda(\omega)$, and superconducting gap of $P1-CSH_{48}$ at 300 GPa.

Crystal structures of P3-C₂SH₁₄ and P1-CSH₄₈ are 2(a)and 2(b), where the shown in Figs. characteristics of molecular crystals are so obvious that they can be written as (CH₄)₂(SH₆) and $(CH_4)(SH_6)(H_2)_{19}$, respectively. To clarify the origin of metallic properties in P1-CSH48, electron band structures and the project electronic density of states (PDOS) of insulating $P_3-C_2SH_{14}$ and metallic P_{1-} CSH_{48} at 300 GPa is shown in Figs. 2(c) and 2(d). Calculated results show that CH₄ and SH₆ contribute more to the deep orbitals with lower energy due to there are strong covalent bonding behavior in C-H and S-H bonds, while hydrogen atoms make a substantial contribution to the electronic density of states near the Fermi level $[N(E_f)]$, indicating that the existence of a large number of H_2 units in the *P*1-CSH₄₈ compound results in its metallic property. EPC calculations show an integrated electron-phonon coupling parameter λ of 1.56 at 300 GPa, which is not very large compared with the value of $\lambda = 2.2$ for H₃S.

90% of the contribution to λ is derived from the-H – H vibration modes of 250–2200 cm⁻¹ [as shown in Fig. 2(e)]. T_c values of the H₂-rich hydrides, such as MgH₁₆ and YH₂₄, usually not higher than that of the molecular hydrogen (T_c of ≈ 242 K at 450 GPa). Similarly, with a direct numerical solution to the Eliashberg equations, T_c of $P_{1-CSH_{48}}$ is estimated to be 142-156 K at 300 GPa, where the Coulomb pseudopotential was set to be the typical values of μ^{\star} = 0.10-0.13. Table shows a positive correlation between λ , $N(E_f)$, and the hydrogen content of C–S– H molecular crystals, which is consistent with the fact that the metallic and superconductivity of C-S-H molecular crystals are mainly due to the contribution of H_2 molecules. Naturally, $P_{1-CSH_{48}}$, with the highest hydrogen content, has the highest $N(E_f)$ and thus the highest T_c value (156 K) among the six metallic molecular crys"als 'ist©d in Table I.

Next, we investigated the four metastable H₃S-like compounds with 3.7%, 6.25%, 8.3%, and 10% doped carbon, respectively, which were identified using the cluster expansion method. Primitive cells of these four H_3S -like compounds can be seen as supercells of the *Im*3*m*–H₃S where sulfur atoms were replaced by carbon atoms. Thus, carbon atoms here are octahedrally coordinated by six hydrogen atoms (as shown in Fig. 3). Low-level carbon-doping localizes electrons in C-H bonds and reduced symmetry, which is detrimental to high-temperature superconductivity. To investigate how different levels of carbon doping affect the stability, electronic structure, and superconductivity of C-S-H_compounds, detailed analysis were carried out Pm3mon the $H_3S_{0.9375}C_{0.0625}$ $(CS_{15}H_{48}),$ C2/m-H₃S_{0.917}C_{0.083} and $C_2/m-H_3S_{0.9}C_{0.1}$ $(CS_{11}H_{36}),$ (CS_9H_{30}) stoichiometries, since the electron-phonon coupling simulations of $Im_3m_{-}H_3S_{0.963}C_{0.037}$ (CS₂₆H₈₁) exceed the limits of our current computing facilities. All of these three compounds are dynamically stable at 300 GPa and can be dynamically stable at pressures down to 260, 230, and 180 GPa, respectively (see Fig. S2 for

detail).

FIG. 3. Crystal structures of (a) $Im_3m_-H_3S_{0.963}C_{0.037}$ (CS₂₆H₈₁), (b) $Pm_3m_-H_3S_{0.9375}C_{0.0625}$ (CS₁₅H₄₈), (c) $C2/m_-H_3S_{0.917}C_{0.083}$ (CS₁₁H₃₆), and (d) $C2/m_-H_3S_{0.9}C_{0.1}$ (CS₉H₃₀) at 300 GPa. The large, medium, and small spheres represent the S, C, and H atoms, respectively. The translucent regular tetrahedrons represent the SH₆-like CH₆ units.

Calculated superconductivity of compressed CS₁₅H₄₈, CS11H36, and CS9H30 is listed in Table II. To better visualize how doping affect superconductivity, $N(E_f)$, λ , and T_c (K) for C-doped H₃S compounds with different doping ratios at 300 GPa are shown in Fig. 4(a). With the increase of C-doping concentration, T_c rises first and then decreases. $CS_{11}H_{36}$ with a C-doped concentration of 8.3% has the highest T_c value. It is worth noting that, with the increase of doping concentration, T_c shows exactly the same trend as $N(E_f)$, which indicated that doping affects the $N(E_f)$ thus T_c values. Additionally, the superconducting temperature increases with decreasing pressure [as shown in Fig. 4(b)], and $CS_{11}H_{36}$ have the T_c value of 216 K at 230 GPa. Notably, the T_c values of C-doped H₃S compounds are lower than that of H₃S in the pressure range studied and are ≈ 100 K lower than the for C-S-H maximum measured value the superconductor, which is inconsistent with previous

FIG. 4. (a) Calculated electronic density of states at the Fermi level $[N(E_t)]$ (top panel), the electron-phonon coupling parameter (λ) (middle panel), and T_c (bottom panel) of H₃S and H₃S-like low level C-doping C–S–H compounds at 300 GPa. (b) Pressure dependence of T_c of H₃S and H₃S-like low level C-doping C–S–H compounds.

TABLE II. Primitive cells, space group (S.G.), pressure (GPa), electronic density of states at the Fermi level [$N(E_f)$, states/spin/Ry/f.u.], λ , ω_{\log} (K), isotropic superconducting gap (meV) at 40 K, and T_c (K) estimated using $\mu^* = 0.10(0.13)$ for H₃S and H₃S-like low-level C-doping C–S–H compounds.

Compound	Primitive cell	S.G.	Pressure	$N(E_f)$	λ	ω_{\log}	Δ	T_c
H ₃ S	H ₃ S	$1m\overline{3}m$	180	3.30	2.35	1134	51.32	245(230)
H ₃ S	H ₃ S	$Im\overline{3}m$	200	3.31	1.83	1366	45.68	233(217)
H ₃ S	H ₃ S	$1m\overline{3}m$	300	3.48	1.30	1679	35.26	199(178)
H ₃ S _{0.8375} C _{0.0625}	CS15H48	$Pm\overline{3}m$	260	3.18	1.74	900	35.07	190(168)
H ₃ S _{0.9375} C _{0.0625}	CS15H48	$Pm\overline{3}m$	300	3.14	1.30	1353	30.29	168(151)
H ₃ S _{0.917} C _{0.083}	CS11H36	C2/m	230	3.26	1.80	1176	41.23	216(200)
H ₃ S _{0.917} C _{0.083}	$CS_{11}H_{36}$	C2/m	300	3.18	1.47	1338	35.30	189(172)
H ₃ S _{0.9} C _{0.1}	CS_9H_{30}	C2/m	180	3.12	1.84	1104	38.79	201(187)
H ₃ S _{0.9} C _{0.1}	CS ₉ H ₃₀	C2/m	300	3.01	1.29	1429	31.17	169(153)

studies.

Despite performing thorough chemical composition and crystal structure searches for the C-S-H system at 300 GPa to tackle the unsolved puzzle of roomtemperature superconducting carbonaceous sulfur hydride, neither a thermodynamically stable compound nor room-temperature superconductivity was identified. We have to mention that the validity of the experimental results has recently been questioned, where it has been proposed that either the measured superconductivity in C-S-H might be unconventional or the measurements might be erroneous. Clearly, more effort is required to fully understand the measured superconductivity in carbonaceous sulfur hydride.

4. Conclusion

Extreme superhydrides represent a class of hydrogen-rich materials containing the highest atomic hydrogen content among binary metal hydrides reported to date. The structures of these MH_{18} compounds consist of unique H_{36} clathrate units stabilized under pressure starting around 300–400 GPa. Superconducting critical temperatures exceeding room temperature arise from favorable electronic density of states near the Fermi level and the large phonon energy scale of the vibration modes, as well as the strong electron-phonon coupling, as demonstrated for CeH18 and ThH18. Meanwhile, other MH_{18} compounds exhibit a wide range of T_c with variable combinations of electronic, phonon, and electron-phonon coupling. Recent focus in this research field has been mostly on reaching higher critical temperatures in ternary and higher multinary hydrides; the present work raises remarkable prospects that the bonding and electronic properties of the newly identified extreme binary superhydrides parallel those of

atomic metallic hydrogen, giving rise to the highest T_c values among all known thermodynamically stable superhydrides. Furthermore, we have examined the influence of various heavy elements in hydrogen-rich

superconductors over a range of pressures, and the resulting insights extend and refine the original conjecture of reducing the pressure for achieving AMH-like superconductivity by chemical doping and chemical precompression. Additional considerations of electron-³¹ or hole-⁴⁷doping effects in these extreme superhydrides may provide a promising platform for further exploration and optimization of superconductors that may host extraordinary aboveroom-temperature superconductivity.

In addition, we have extensively explored the phase space of carbonaceous sulfur hydrides at 300 GPa by using the CALYPSO structure prediction and cluster expansion method. Although no thermodynamically stable phase was found, several metastable crystals have been identified to be high-temperature superconductors with T_c values of 100–200 K. The coordination number of the C and S atoms in H-rich metastable C-S-H crystals are four and six, respectively, with the formation of CH₄ and SH₆ units, where the remaining H atoms form H₂ units in pairs. Such kinds of molecular crystals are apparently not candidates for good room-temperature superconductors. Using primitive cells up to 64 atoms, T_c values of H₃S-like structures with low levels of carbon doping were estimated to be _189 K for H₃S_{0.917}C_{0.083} at 300 GPa, for the reason that doping localizes electrons in C-H bonds and then decreases the $N(E_{\theta}).$ Our current results provide ล comprehensive map between the crystal structure and superconductivity of carbonaceous sulfur hydride materials at high pressures. More efforts, both theoretically and experimentally, are required to be done for making the mechanism of room-temperature superconducting in carbonaceous sulfur hydride clear.

5. Schedule and prospect for the future

I have been a HOKUSAI general user and wish to continue using the system. During the last fiscal year 2022, I have finished work on RE-H and C-S-H

compounds, and have published two articles on JACS and PRB, respectively. For the next fiscal year, we plan to continue using the HOKUSAI supercomputer to study the stability and superconductivity of compressed superhydrides, where new hightemperature superconductors and even roomtemperature superconductors are expected to be proposed. We expect high-standard publications can be eventually achieved.

6. If no job was executed, specify the reason.

Fiscal Year 2022 List of Publications Resulting from the Use of the supercomputer

[Paper accepted by a journal]

X. Zhong, Y. Sun, T. Iitaka, M. Xu, H. Liu, R. J. Hemley, C. Chen, and Y. Ma, *Prediction of Above-Room-Temperature Superconductivity in Lanthanide/Actinide Extreme Superhydrides*, J Am Chem Soc **144**, 13394 (2022).

Y. Sun, X. Li, T. Iitaka, H. Liu, and Y. Xie, *Crystal Structures and Superconductivity of Carbonaceous Sulfur Hydrides at Pressures up to 300 GPa*, Phys Rev B **105**, 134501 (2022).

[Conference Proceedings]

[Oral presentation]

[Poster presentation]

[Others (Book, Press release, etc.)]