2020年度 利用報告書

課題名(タイトル):

分子構造の回帰分析に基づく触媒の最適形状探索

利用者氏名:

〇山口 滋

理研における所属研究室名:

環境資源科学研究センター 先進機能触媒研究グループ

1. 本課題の研究の背景、目的、関係するプロジェクトとの関係

データ駆動型不斉触媒設計法の開発に取り組んでいる。 本課題では、不斉触媒反応における生成物の鏡像異性 体比と不斉触媒の3次元構造情報とを機械学習手法を 用いて相関付けし、不斉収率にとって重要な構造情報 を抽出・可視化し、その情報をもとに触媒設計を行う ことを目的としている。不斉触媒を3次元構造情報に 変換するために、触媒構造の構造最適化を行った。 また遷移状態計算もあわせて行い、可視化した重要構造 情報と照らしあわせることによる反応機構解明も行なった。

2. 具体的な利用内容、計算方法

触媒構造最適化、反応の遷移状態計算には Gaussian 16 を用いた。密度汎関数法を用い各種汎関数および基底 関数を検討した。

3. 結果

最適化した不斉触媒構造を用いて、機械学習のための 記述子を計算した。計算した記述子から汎化能の良い 不斉収率予測モデルを構築しつつ、可視化した重要構 造情報をもとに分子設計にも成功している。とくに今 年度は有機合成の課題とも言われている複雑な反応の データ駆動型触媒設計による制御に成功した。

4. まとめ

計算化学的手法が不斉触媒反応のデータ解析に大いに 役立っている。研究推進上、Hokusai スーパーコンピュ ータシステムは不可欠となっている。

今後の計画・展望

引き続き、不斉触媒のデータ駆動型設計法の開発および応用に取り組む。