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１． Background and purpose of the project, 

relationship of the project with other projects 

In human microcirculation, the red blood 

cell(RBC) occupies the most volume fraction of blood 

and it is the main factor which influences the blood 

rheological properties [1]. Some pathological process 

is closely related to the motion and deformation of the 

RBC in a microchannel such as the oxygen transport 

and the filtration of the RBC in spleen [2]. The motion 

of RBCs in a microchannel with different geometry is 

generally studied [3]. 

    Some diseases can influence the mechanical 

properties of the RBC such as sepsis, malaria, type 2 

diabetes mellitus, hereditary spherocyte and so on, 

which can reduce the deformation ability of the RBC. 

For example, Park [4] studied the membrane stiffness 

of RBCs parasitized by Plasmodium falciparum. It is 

found the they are 4~20 times stiffer than normal 

RBCs. Recognizing the mechanical properties of the 

RBC can assist the disease diagnosis. Many 

technologies are developed to measure the 

mechanical properties. For example, micropipette 

aspiration, optical tweezers and observation done by 

atomic force microscope. But these methods are 

difficult to operate and consume a lot of time thus 

cannot deal with a large amount of blood sample in a 

short period. It is of great significance to design a 

high-throughput method to measure the mechanical 

properties of the RBC. 

The core of related works is evaluating the 

relationship between motion or deformation index 

and the mechanical properties of the RBC in different 

flow condition and then propose a scheme to 

characterize the mechanical properties of RBCs 

quickly. Many researches focus on the motion of RBC 

in a channel with a square cross section. In such 

channel, the fluid field exhibits asymmetry which 

results the asymmetry of the deformation of the RBC. 

This will introduce difficulty in measuring of the 

deformation index of the RBC. A tube with a circular 

cross section can alleviate the asymmetry. Moreover, 

the motion of a single RBC in a narrow tube 

(diameter~4μm) is never been studied and the motion 

and deformation index may be more sensitive to the 

change of mechanical properties of the RBC which is 

better for the characterization. So we study the 

steady motion of a single RBC in a circular-section 

narrow tube. Different steady shapes are presented 

as function of the membrane elastic shear modulus. 

And we explain the relationship between the cell 

velocity and the membrane shear modulus using 

lubrication theory qualitatively. The extra pressure 

drop which shows the flow resistance introduced by 

cell is discussed with regard to different elastic shear 

modulus.  

 

２． Specific usage status of the system and 

calculation method 

In FY2019, about 2,700,000 core*hours were 

used for my Quick Use project. We used a parallel 

program based on OpenMp and MPI to numerically 

simulate the motion and deformation of red blood cell 

in confined micro-tube. 

In the present work, the immersed boundary 

method is used to simulate the interaction between 

cell membrane and flow field. According to the 

Continuum Mechanics [5], the deformation gradient 

tensor 𝐅  is defined as 𝐅 = ∂𝐱/ ∂𝐗 , in which X 
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represents the coordinate of a point under a stretch-

free condition and x represents its current coordinate. 

In reality, the thickness of the RBC membrane, which 

is only about 2nm, three orders smaller than the 

diameter of RBCs, can be neglected. Then the 

membrane is modeled as two dimensional and the 

surface deformation tensor is defined as:  

    𝐅𝑠 = 𝐏 ∙ 𝐅 ∙ 𝐏𝑅                           (1) 

𝐏 = 𝐈 − 𝐧𝐧 and 𝐏𝑅 = 𝐈 − 𝐧𝑅𝐧𝑅 are surface projection 

tensors. 𝐧 and 𝐧𝑅 are the unit normal vectors in the 

current coordinate and reference stress-free 

coordinate, respectively. Then define the surface left 

Cauchy-Green deformation tensor as 

    𝐁𝑠 = 𝐅𝑠 ∙ 𝐅𝑠
𝐓.                           (2) 

Its invariant is defined as 

𝐼1 = tr(𝐁𝑠) − 2  

𝐼2 = (tr(𝐁𝑠)2 − tr(𝐁𝑠
2))/2 − 1             (3) 

Rewrite them as:  

    𝑐1 = 𝐼1 + 1  and  𝑐2 = 𝐼2 + 1            (4) 

The strain energy function derived by Skalak et al. 

[5] is used in the paper： 

  𝑊𝑠 =
𝐸𝑠

8
(𝑐1

2 + 𝛼𝑐2
2 − 2(𝛼 + 1)𝑐2 + 𝛼 + 1)     (5) 

E𝑠 is an elastic shear modulus and α(α ≫ 1) is an 

index to resist the surface dilation. Then the in plane 

stress is given by 

    𝛕 =
2

√𝑐2

(
∂𝑊𝑠

∂𝑐1

𝐁s + c2

∂𝑊s

∂𝑐2

𝐏)              (6) 

According to Pozrikidis [6], the transvers shear vector 

𝐪 is given by 

    𝐪 = ((𝐏 ∙ ∇) ∙ 𝐦) ∙ 𝐏                      (7) 

𝐦 represents the bending moment which is modeled 

by a linear constative as following： 

    𝐦 = 𝐸𝑏(𝛋 − 𝜅𝑅𝐏)                        (8) 

Eb  is a bending stiffness. 𝛋  and κR  represent the 

current Cartesian curvature and the reference mean 

curvature, respectively.  

    𝛋 = −𝐏 ∙ ∇𝐧                             (9) 

    𝜅𝑅 = −
1

2
tr(𝐏𝑅 ∙ 𝛁𝐧𝑅) = −

1

2
tr(∇𝐧𝑅)        (10) 

We define the membrane as Γ , the domain 

surrounded by Γ is Ω1, and the outer domain as Ω2. 

Using [∗] to represent the jump of a variable at the 

membrane, the following conditions can be derived: 

[𝐯] = 0,[𝐧 ∙ 𝛔] = 𝐟Γ                       (11) 

𝐯  is the velocity vector, 𝛔  is the stress tensor of 

fluid, 𝐧  is the unit normal vector of Γ  pointing 

outside Ω1  and 𝐟Γ  is the surface singular force 

vector. 

Considering the force balance of a infinitely small 

membrane patch, 𝐟Γ can be given by: 

   𝐟Γ = −Trace[(𝐏 ∙ ∇)(𝛕 + 𝐪𝐧)]              (12) 

Assuming the fluid is incompressible, the Naiver-

Stokes equations is given by: 

 𝜌 (
∂𝐯

∂t
+ (𝐯 ∙ ∇)𝐯)

= −∇𝑝 + ∇ ∙ (2𝜇𝐃(𝐯))

+ ∮ 𝐟Γ𝛿(3)(𝐱 − 𝐱Γ)dΓ
 

Γ

         (13) 

This is the basic formulation of the immersed 

boundary method. ρ is the density, p is the pressure, 

μ  is the dynamic viscosity, 𝛿(3)(𝐱)  is the three-

dimensional delta function and 𝐃(𝐯) = (∇𝐯 + ∇𝐯T)/2 

is the strain rate tensor. 

In order to consider the different physical 

properties of the inner and outer regions, an indicator 

function is defined as, 

   𝐼(𝐱) = {
1, 𝐱 ∈ Ω1,
0, 𝐱 ∈ Ω2.

                       (14) 

Then the volume-of-fluid (VOF) function of a point 𝐱 

is defined as an integral over a small volume δV(𝐱), 

   𝜙(𝐱) =
∫ H(x′)dV′ 

δV(𝐱)

∫ dV′ 

δV(𝐱)

                   (15) 

Therefore, the density and viscosity are written as 

following, 

   {
𝜌 = 𝜙𝜌1 + (1 − 𝜙)𝜌2,

𝜇 = 𝜙𝜇1 + (1 − 𝜙)𝜇2.
                   (16) 

 

３． Result 

In the present simulation, the normal elastic 

shear modulus is set 5.0 × 10−6𝑁/𝑚 , which is 

denoted by 𝐸𝑠0 . We study seven cases with 𝐸𝑠/𝐸𝑠0 

varying from 1 to 7, where 𝐸𝑠  denotes the elastic 

shear modulus. The initial cell shape is a normal 
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biconcave shape with reduced volume of 0.64 in all 

the seven cases. 

(1) Shape and deformation 

Figure 1 shows the shape changes of RBCs with 

different 𝐸𝑠. Initially the RBC is put at the center of 

the tube with zero velocity. We are more concerned 

about the steady state of the RBC in narrow tube, so 

the large 10𝜇𝑚 tube isn’t long enough to get a full 

developed flow or the steady state of the RBC, which 

is the reason why the shapes of RBCs with different 

𝐸𝑠  in 10 𝜇𝑚  tube are nearly the same parachute 

shape. The RBCs exhibit different deformation while 

they are squeezing into the narrow tube (location Ⅱ 

in fig. 1). The RBC with large 𝐸𝑠  take on more 

buckling, which means that a more stiff RBC needs 

more time to balance its shape and relax its local 

stresses. And we can see that they take on different 

shape at location Ⅲ after they enter the narrow tube. 

The rear of the more rigid RBC is convex compared 

with the concave tail of the softer RBC. After the RBC 

travels a long distance in the narrow tube(location Ⅳ 

in fig. 1), the RBCs with different 𝐸𝑠 reach distinct 

final shapes. The relatively soft RBC has a more 

symmetric shape while the more rigid RBC exhibits 

an asymmetric shape with buckling on its side. 

 

Fig.1. The shape evolution with time. The first line is 

a RBC with 𝐸𝑠  of 5.0𝑝𝑁/𝜇𝑚  The second line is a 

RBC with 25.0𝑝𝑁/𝜇𝑚 . Ⅰ ,Ⅱ ,Ⅲ ,Ⅳ  correspond to 

different location or different state of the cell motion. 

Ⅰ: the head of the cell reaches the end of the bigger 

tube where 𝑥 = 20𝜇𝑚  ( 𝑥 = 0  corresponds to the 

inlet). Ⅱ: the head of the cell reaches the end of the 

end of the constriction tube where 𝑥 = 40𝜇𝑚. Ⅲ: the 

rear of the cell arrives at the end of the constriction 

tube which means the cell totally squeezes into the 

narrow tube. Ⅳ: the cell reaches a steady shape. 

 

To study the deformation of the RBC 

quantitatively, we define a deformation parameter 𝐿𝑐, 

which represents the length occupied by RBC at the 

central axis(shown in fig 2).It can partly represent 

the average length of the RBC. The result of a RBC 

with 𝐸𝑠 of 10.0𝑝𝑁/𝜇𝑚 is shown in fig 3. Figure 3 (a) 

shows the changes of 𝐿𝑐 with time 𝑡(the RBC starts 

to move at 𝑡 = 0). Figure 3 (b) shows the changes of 

𝐿𝑐  with 𝑥𝑐 , where 𝑥𝑐  is the location of the 

membrane centroid(𝑥𝑐=0 at the inlet).  

 

Fig.2. The definition of 𝐿𝑐. 𝐿𝑐 is the length occupied 

by RBC at the central axis. 

 

  (a) 

 

  (b) 
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Fig.3. The change of 𝐿𝑐  of a RBC with 𝐸𝑠  of 

10.0𝑝𝑁/𝜇𝑚 while moving. 𝐿𝑐 is the length occupied 

by RBC at the central axis. (a) The change of 𝐿𝑐 with 

time 𝑡. (b) The change of 𝐿𝑐 with 𝑥𝑐, where 𝑥𝑐 is the 

location of the membrane centroid(𝑥𝑐=0 at the inlet). 

 

We can see from fig 3(b) that 𝐿𝑐 decreases from 

the maximum value after the RBC entering the 

narrow tube. This means the RBC begin to relax after 

the large deformation in the constriction tube. Finally, 

𝐿𝑐 reaches a steady value. We study the maximum 

and steady value of 𝐿𝑐 as a function of 𝐸𝑠(shown in 

fig 4). The steady value is calculated by averaging the 

value of 𝐿𝑐 over a time period when it is s. We can 

see both value decreases with the increase of 𝐸𝑠 . 

When the 𝐸𝑠/𝐸𝑠0 increases from 1 to 7, the maximum 

value of 𝐿𝑐 decreases from 13.26𝜇𝑚 to 11.72𝜇𝑚. Its 

relative decrease is about 11.6 % . And the steady 

value of 𝐿𝑐  decreases from 10.26𝜇𝑚  to 9.59𝜇𝑚 .Its 

relative decrease is about 6.5%. 

 

Fig.4.  The steady and max value of 𝐿𝑐  with 

different 𝐸𝑠. 𝐿𝑐 is the length occupied by RBC at the 

central axis. 𝐸𝑠  is elastic shear modulus. 𝐸𝑠0 =

5.0 × 10−6𝑁/𝑚 = 5.0𝑝𝑁/𝜇𝑚. 

 

The high throughput microfluidic device 

measures the deformation or motion parameters to 

determine the mechanical parameters of the RBC. 

Figure 4 shows the steady value of 𝐿𝑐  changes 

monotonically with 𝐸𝑠, which indicates that it can be 

used to measure 𝐸𝑠. 

  

(2) Velocity 

    Figure 5 shows the velocity(denoted by 𝑣𝑐 ) 

change of a RBC with 𝐸𝑠 of 10.0𝑝𝑁/𝜇𝑚. Figure 5 (a) 

shows the changes of 𝑣𝑐  with time t. Figure 5 (b) 

shows the changes of 𝑣𝑐 with 𝑥𝑐 . 

(a) 

 

(b) 

 

Fig.5. The velocity of the cell at different (a) time(𝑡 =
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0 corresponds to the start time) (b) cell location (𝑥𝑐  is 

the location of the centroid of the cell). 

 

 

Fig.6. The steady velocity of the cell with different 

𝐸𝑠. 𝐸𝑠0 = 5.0𝑝𝑁/𝜇𝑚. 

 

The value of 𝑣𝑐  is relatively small when the cell 

starts. In the constriction tube, 𝑣𝑐 increases rapidly 

and reaches peak. Then 𝑣𝑐  decreases to a steady 

value in the narrow tube. Figure 6 shows the steady 

value of 𝑣𝑐 with different 𝐸𝑠. This value is calculated 

by averaging the velocity  over a period when the 

velocity is near constant. When the 𝐸𝑠/𝐸𝑠0 increases 

from 1 to 7, the steady value of 𝑣𝑐  decreases from 

3.216𝑚𝑚/𝑠  to 3.090𝑚𝑚/𝑠 . Its relative decrease is 

about 4%. To explain this relation between 𝑣𝑐 and 𝐸𝑠, 

the average lubrication layer thickness(denoted by 

𝛿̅) between the cell and the wall is calculated. The x 

axis is aligned with the flow direction. 𝒏 denotes the 

membrane normal vector pointing outward. 𝜃 

denotes the angle between 𝒏 and x axis(𝜃 ∈ [0, π/2]). 

ℂ represents the set of membranes points on which 

15° ≤ 𝜃 ≤ 75°  is satisfied. ∀𝐗 ∈ ℂ , 𝛿(𝐗)  represents 

the minimum distance between 𝐗 and the tube wall. 

Then 𝛿̅ is calculated as following: 

    𝛿̅ =
∫ 𝛿(𝐗)𝑑𝑆

 

ℂ

∫ 𝑑𝑆
 

ℂ

                         (17) 

We calculate the average value of delta over a time 

period as the final result. 

 

Fig.7. The definition of 𝛿. 

 

 

Fig.8. The average lubrication layer thickness with 

different elastic shear modulus. Some err bars are too 

small to see. 

 

Figure 8 shows the value of 𝛿̅ with different 𝐸𝑠. 

We can see 𝛿̅ varying from 0.23~0.33 which is much 

less than the diameter of the narrow tube(𝑑 = 4𝜇𝑚). 

𝛿̅ decreases monotonically with 𝐸𝑠 increasing. This 

is due to the loss of deformation ability. Note that the 

diameter of the RBC is 7.82𝜇𝑚 while the diameter of 

the narrow tube is 4𝜇𝑚. The more rigid RBC will 

occupy more area of the cross section, which results 

in the decrease of 𝛿̅ . Then we relate 𝛿̅  with the 

steady velocity of the RBC by lubrication theory.. 

 

Fig.9. The physical model. A cylinder is moving at a 
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constant velocity V in a long circular cross- section 

tube toward right. The diameter of the cylinder is a, 

the tube is R. Take the cylinder as the reference frame 

then establish a cylindrical coordinate system. 

 

Consider a cylinder moving at a constant velocity 

in a tube with infinite length. Homogeneous fluid fills 

the tube with a viscosity 𝜇. The diameter and length 

of the cylinder is 2𝑎  and L , respectively. The 

diameter of the tube is 2𝑅. 𝑄0 is the flow rate. ℎ =

𝑅 − 𝑎 ≪ 𝑅. 

Assume the velocity of the cylinder is 𝑉.Take the 

cylinder as the reference frame. Then the tube move 

at a velocity of 𝑉  toward left. Establishing a 

cylindrical coordinate system as shown in fig.9. z axis 

is aligned with the flow direction. Velocity vector is 

denoted by (𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧). Then we study the flow in the 

gap between the tube and the cylinder. Due to the 

symmetry in this case, we have 𝑢𝜃 = 𝑢𝑟 = 0. Then 

according to the incompressibility of the fluid, we can 

derive 𝜕𝑢𝑧/𝜕𝑧 = 0. Then list the momentum equation 

as following: 

    
𝜕𝑝

𝜕𝑟
= 0                                (18) 

    
𝜕𝑝

𝜕𝜃
= 0                                (19) 

    
𝜕𝑝

𝜕𝑧
=

𝜇

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢𝑧

𝜕𝑟
),                      (20) 

Where 𝑝 is the pressure. 

The boundary condition: 

    {
𝑢𝑧|𝑟=𝑅−ℎ = 0,

𝑢z|𝑟=𝑅 = −𝑉.
                         (21) 

Let ∂𝑝/𝜕𝑧 = 𝜉, we can get: 

    𝑢 =
𝜉2

4𝜇
𝑟2 + 𝑐1 ln 𝑟 + 𝑐2                  (22) 

    𝑐1 =

𝜉
4𝜇

(𝑅2 − (𝑅 − ℎ)2) + 𝑉

ln(𝑅/(𝑅 − ℎ))
             (23) 

    𝑐2 = −
𝜉

4𝜇
(𝑅 − ℎ)2 − 𝑐1 ln(𝑅 − ℎ)        (24) 

Considering the equilibrium of the cylinder in 𝑧 

direction: 

    𝜋(𝑅 − ℎ)2 × (−
𝜕𝑝

𝜕𝑧
𝐿)

= 2𝜋(𝑅 − ℎ)𝐿 × 𝜇
𝜕𝑢𝑧

𝜕𝑟
|

𝑟=𝑅−ℎ
   (25) 

Considering the flow rate along the tube is constant, 

we have:  

    𝑄0 = 𝜋𝑅2𝑉 + ∫ 2𝜋𝑟𝑢𝑧𝑑𝑟
𝑅

𝑅−ℎ

              (26) 

Finally, we can derive: 

    𝑉 =
2Q0

𝜋[𝑅2 + (𝑅 − ℎ)2]
                   (27) 

    
𝜕𝑝

𝜕𝑧
= 𝜉 = −

8𝑄0𝜇

𝜋(𝑅4 − (𝑅 − ℎ)4)
            (28) 

The average lubrication layer thickness 𝛿̅ 

corresponds to ℎ  in equation(27), which shows the 

cylinder velocity decreases with ℎ  decreasing. 

Equation (28) shows that the absolute value of the 

pressure gradient increases with ℎ  decreasing, 

which indicate the pressure needed to keep the flow 

rate constant increases. So when the elastic shear 

modulus(𝐸𝑠) increases, it will decrease the lubrication 

layer thickness which increase the flow resistance 

and finally slow the RBC. In next part, we study the 

flow resistance caused by the cell. As we can see, 

while the elastic shear modulus increases by six 

times, the steady value of the cell velocity decreases 

by 4%, which is relatively small.  

 

(3) Extra pressure drop 

 The extra pressure drop is defined as following: 

    𝛥𝑝𝑒𝑥𝑡𝑟𝑎 = 𝛥𝑝 − Δ𝑝Poiseuille               (29) 

Where 𝛥𝑝 is the pressure needed to push the cell 

moving in the plasma and the Δ𝑝Poiseuille  is the 

pressure needed to push the plasma moving at the 

same flow rate, just as shown is fig 10. Given the flow 

rate 𝑄, the fluid viscosity 𝜇 and the diameter 𝐷 of 

the tube, we can rewrite equation (29) as following: 

    𝛥𝑝𝑒𝑥𝑡𝑟𝑎 = 𝛥𝑝 −
128𝜇𝑄𝐿

𝜋𝐷4
                 (30) 
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Fig.10. The first one is the Poiseuille flow without cell. 

Q is the flow rate, and Δ𝑝Poiseuille  is the 

corresponding pressure. The second one has a cell in 

the tube with the same flow rate, but the pressure 

needed is higher than the first one, which means 

𝛥𝑝 > Δ𝑝Poiseuille. 

 

The extra pressure drop represents the increase 

of flow resistance due to the existence of the cell. In 

our simulation. The cell velocity is basically steady at 

𝑡 = 50𝜇𝑠 . So we calculate the extra pressure drop 

with different 𝐸𝑠 at 𝑡 = 50𝜇𝑠. As fig.11 shows：extra 

pressure drop increases rapidly with cell hardening, 

which means the harder cell bring larger flow 

resistance. This result is also qualitatively consistent 

with the result of lubrication theory. 

 

Fig.11. The extra pressure drop with different 𝐸𝑠. 

 

As we can see, while the elastic shear modulus 

increases by six times, the extra pressure drop 

increases by 145%, which is considerably larger than 

the changes of the steady velocity (~4 % ). In our 

previous modeling that treats the cell as a cylinder, 

the average lubrication layer thickness is a key 

parameter. The increase of elastic shear modulus 

results in the reduction of the layer thickness (shown 

in fig 8). Thus influence the extra pressure drop 

which represents the flow resistance caused by the 

cell. The simulation result shows that the extra 

pressure drop is more sensitive to the lubrication 

layer thickness than the velocity while the thickness 

is mainly determined by the elastic shear modulus. 

Therefore, the extra pressure drop is a sensitive 

parameter to elastic shear modulus change and can 

serve as an index to represent it. 

 

４． Conclusion 

We simulated the motion and deformation of a 

single red blood cell in a narrow circular-section tube 

with diameter of 4𝜇𝑚. The influences of elastic shear 

modulus 𝐸𝑠 are studied. Firstly, we study the shape 

evolution of the cell. We find that the final shape of 

the cell is usually an asymmetric shape. Then we find 

that in such a narrow geometry the influence of 𝐸𝑠 

on the cell velocity is little. This is partly due to the 

finite changes of the lubrication layer thickness. We 

find there is a monotonic relationship between the 

velocity with 𝐸𝑠. And we give an explanation for this 

using lubrication theory. The extra pressure drop 

which shows the flow resistance caused by the cell is 

also studied. We find this parameter is relatively 

sensitive to the changes of 𝐸𝑠.  

 

５． Schedule and prospect for the future 

In the future, we’ll continue to numerically study 

the interaction of the secondary flow in a curved pipe 

with multiple cells to assist and direct the separation 

of rare blood cells such as circulating tumor cells 

(CTC) using a microfluidic device which mainly 

consists of a curved pipe. We will systematically 

study the behavior of multiple cells under different 

cell mechanical properties, volume fraction and flow 

boundary conditions to find the appropriate condition 

to achieve a good separation result. Our numerical 
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simulation is very important for the separation by 

using a curved pipe and design of corresponding 

experiment condition and microfluidic device. 

Therefore, we want to get the continuous support 

from RIKEN Supercomputer System in the FY 2020. 
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