課題名 (タイトル):

超伝導/超流動における準粒子励起

利用者氏名:堤 康雅 所属:古崎物性理論研究室

1. 本課題の研究の背景、目的、関係するプロジェクトとの関係

超伝導体/超流動体で実現しているギャップ 関数を同定する手法として、低エネルギー準粒子 励起を熱力学量や輸送特性を通して観測するこ とが非常に有効である。例えば、フルギャップの 超伝導体では低温での電子比熱係数の温度依存 性は指数関数で記述される。一方で、ポイントノ ードやラインノードが存在する場合には、電子比 熱係数の低温依存性はそれぞれ温度の二乗、温度 に線形となる。

また、磁場中では磁束渦糸周りの超伝導電流により、準粒子エネルギーがドップラーシフトし、ノード近傍で準粒子が励起されやすくなる。フルギャップ超伝導体では、電子比熱係数は磁場の大きさに比例するが、ノードがある場合には磁場の平方根に比例しており、低磁場で電子比熱係数の急激な増大が観測される。

さらに、磁場方向を変化させて電子比熱係数を 測定することで、ノードの位置も原理的には同定 することができる。磁束渦糸周りの超伝導電流は 磁場と垂直に流れるので、磁場をノードと垂直に かけた場合には、ノード上の準粒子運動量の向き と超伝導電流の向きが平行になり、ドップラーシ フトが大きくなるため、ノード近傍の準粒子が励 起されやすい。一方で、磁場とノードの方向が一 致しているとノード上の準粒子はドップラーシ フトを受けない。このため、低磁場領域ではノー ド方向に磁場をかけた際に、電子比熱係数が最小 値をとると期待される。高磁場領域では、ノード 方向が小さな上部臨界磁場を示すため、ノード方 向に磁場をかけた際に電子比熱係数が最大値と なる。つまり、磁場を増加させるとノード方向の 磁場に対して最小値を示していた電子比熱係数 が最大値へと変化して、磁場方向に対する比熱振

動の逆転が起こる。

しかし、実際の超伝導体ではフェルミ速度に異 方性があるため、観測量からいかにギャップノー ドの情報を引き出すかが問題となる。正方晶や六 方晶の超伝導体では、ab 面内のフェルミ速度の 異方性は比較的小さいため、縦ラインノードの位 置を同定することには成功している。一方で、ac 面でのフェルミ速度の異方性は大きいので、回転 磁場中での比熱測定から、水平ラインノードやポ イントノードの位置を同定することは難しいと 考えられていた。

本研究では、電子比熱係数に比例する準粒子のゼロエネルギー状態密度の磁場方向依存性を計算し、超伝導体で観測された比熱や熱伝導率と比較することで、未知のギャップ関数を同定することが目的である。特に、これまではほとんど行われてこなかった、磁場を c 軸から ab 面へ傾ける実験を想定し、新たなギャップ関数の決定手法の確立を目指す。

2. 具体的な利用内容、計算方法

まずはギャップ関数を仮定して準古典 Eilenberger 方程式を解くことで、渦糸格子状態 での秩序変数と松原形式の準古典グリーン関数 を自己無撞着に求める。松原グリーン関数を解析 接続することで、遅延グリーン関数を導出し、準 粒子のゼロエネルギー状態密度を計算する。状態 密度の僅かな磁場方向依存性を明らかにする必 要があるので、解析接続で用いる収束因子を小さ くした精度の高い数値計算が必要である。この計 算は、Runge-Kutta 法により Riccati 形式の微分 方程式を解くことで実行した。この際、MPI を 用いた並列化を行い計算時間の短縮を図った。

3. 結果

ゼロエネルギー状態密度の最大値を与える磁 場角度がアンチノード方向からノード方向へと 移り変わる磁場領域に注目すると、ゼロエネルギ ー状態密度の磁場角度依存性に以下の2点の特 徴的な振る舞いが見られることが明らかとなっ た。

(1)ゼロエネルギー状態密度が最大値を示す磁 場角度は、磁場の増加とともにアンチノード方向 から連続的に変化し、高磁場領域でのノード方向 へと繋がる。

(2)この磁場領域では、ゼロエネルギー状態密度 が極小となるのは、ノード方向に磁場をかけたと きではなく、磁場をノードから少し傾けたときで ある。

これらの振る舞いは、フェルミ速度に異方性が ある場合や、ポイントノードとラインノードが共 存する場合にも現れる。

4. まとめ

磁場を c 軸から ab 面へ傾ける際のゼロエネル ギー状態密度の角度依存性を様々なギャップ関 数について計算した。ゼロエネルギー状態密度の 最大値を与える磁場角度は磁場の増加に伴って アンチノード方向からノード方向へ連続的に変 化し、極小を与える磁場角度もノード方向からわ ずかにずれることが明らかとなった。これらの振 る舞いはフェルミ速度に異方性がある場合にも 現れるので、ギャップノードの位置を同定するた めの回転磁場中の比熱測定は、正方晶や六方晶の 超伝導体に対しても有効である。

5. 今後の計画・展望

現在、 Sr_2RuO_4 のラインノードの有無を明らか にするため実験グループとの共同研究を行って いる。これまで行われてきた熱力学量や輸送特性 に関する実験結果の多くは、ラインノードが存在 することを示唆しているが、決定的な証拠を与え るまでには到っていない。層状ペロブスカイト構 造である Sr_2RuO_4 はフェルミ速度の異方性が非 常に大きいが、本研究で明らかにした特徴はフェ ルミ速度の異方性に依らず現れる。ab 面内、ac 面内の回転磁場中での比熱測定結果と、ゼロエネ ルギー状態密度の数値計算結果を比較すること で、ラインノードの存在を位置も含めて突き止め たいと考えている。

平成 28 年度 利用報告書

平成 28 年度 利用研究成果リスト

【論文、学会報告・雑誌などの論文発表】

Y. Tsutsumi, T. Nomoto, H. Ikeda, and K. Machida, "Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors", Physical Review B, **94**, 224503 (Dec. 2016).