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I.Background and purpose:  

Self-propulsion is the ability of specially designed 

synthetic microparticles to propel themselves by 

harvesting kinetic energy from an active 

environment [1-5]. Contrary to bacteria, 

selfpropulsion of inorganic microswimmers is fueled 

by stationary external nonequilibrium processes, 

like directional “power-strokes" from catalytic 

chemical reactions or self-phoresis by short-scale 

(electric, thermal9 or chemical) gradients, generated 

by the paricles themselves, by virtue of some built-in 

functional asymmetry.  

 The simplest and, possibly, best established model 

of self-propulsion for artificial swimmers diffusing in 

an equilibrium suspension fluid at rest, is encoded 

by the two-dimensional (2D) Langevin equations [5]: 

�̇� = 𝑣0 cosϕ + √𝐷0𝜉𝑥(𝑡) 

�̇� = 𝑣0 sinϕ + √𝐷0𝜉𝑦(𝑡) 

       �̇� = √𝐷𝜙𝜉𝜙(𝑡)             (2) 

 

where r = (x,y) are the coordinates of spherically 

symmetric (or point like) swimmer in the plane,  is 

the angle between the x-axis and its self-propulsion 

velocity vector of constant modulus v0. The Gaussian 

noises i(t), with i = x;y;, are assumed to be zero 

mean valued and delta-correlated, that is 

<i(tj(0)> = 2ijt D plays the role of an 

orientational diffusion constant, whose inverse, , 

quantifies the temporal persistency of the ensuing 

isotropic Brownian motion. Indeed, for long 

observation times t, with t >>  , the asymptotic law 

limit <r2> = 4Dt, defines an effective diffusion 

constant, D = D0 +Ds. Here, D0 is due to the 

environmental thermal fluctuations, while Ds = 

v02/2D is the (typically) much larger self-propulsion 

term, which depends on the activation properties of 

the swimmer in the suspension fluid. 

The above model has a lot of successes in explaining 

experimental data and exploring non-equilibrium 

phenomena [1-5]. Example includes collective motion 

and clustering of artificial micro-swimmers [6], 

rectification of motion of the particles in ratchet 

potential [5], driving particle against applied force in 

symmetric channel [7] etc. Some of these works focus 

on controlling transport of microswimmers aiming 

application to nano-technology medical sciences.  

   Keeping in mind all these recent advancements 

in micro-swimmer technology, in the fiscal year 2015, 

we have explored the following two important 

aspects of diffusion of Janus particles 

(i) Diffusion of Janus particles in a fuel concentration 

gradient and pseudochemotactic drift   

We have studied diffusion of artificial 

micro-swimmers in presence of fuel concentration 

gradient. For this purpose, we consider a chemical 

reactor consisting of a narrow, straight channel of 

length L oriented along the x axis, and a free JP 

moving in it. A constant concentration gradient of 

the chemical that fuels the  

 

 

 

 

 

 

 

 

 

particle’s self-propulsion is maintained by 

connecting the channel to two reservoirs in thermal 

Figure-1: Chemical reactor with a stationary fuel concentration 

gradient. A Janus particle injected in the middle with an arbitrary 

direction of self-propulsion velocity. 
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equilibrium with concentrations ρL < ρR. The chemical 

concentration in the channel, ρ(x), will then grow 

linearly from left to right. At the channel ends, x = 

-L/2 and +L/2  two porous membranes allow the 

chemical flow in and out but prevent the JP from 

escaping into the reservoirs. 

  With the above setup we explored here to issues: 

(a) Upon injecting the JP at the center of the channel, 

x = 0, which containment membrane is the JP more 

likely to hit first? (b) On which side of the channel is 

it going to sojourn the most time? This might sound 

paradoxical, but we came to the conclusion that the 

injected JP is finally attracted toward the left (high 

fuel concentration end) exit, even if, immediately 

after injection, it may drift to either direction, 

depending on the x-dependence of the propulsion 

parameters v0  and τφ. For the most common case 

when the x-dependence of τφ is much weaker than Ds, 

the injected particle points decidedly to the right 

(low fuel concentration end) exit. Reconciling these 

seemingly conflicting mechanisms is of paramount 

importance to control the chemotaxis of artificial 

microswimmers as opposed to bacterial chemotaxis. 

 

(ii) Diffusion of Eccentric Microswimmers 

We proposed a new model for dynamics, which can 

explain diffusion of all type of self-propelled Janus 

particles.  In the standard model of equation (1) two 

main assumptions are implicit: (a) The 

self-propulsion velocity v0 is constant and, most 

importantly, oriented along a certain symmetry axis 

of the particle, like the longitudinal axis in the case 

of an active nano-rod with one active tip , or the 

diameter perpendicular to the equatorial plane 

dividing the two faces of a spherical Janus particle, 

as sketched in Fig.2.  The center of the force 

responsible for the swimmer’s propulsion coincides 

with the swimmer’s center of mass. Under these 

conditions, the only effect of the angular dynamics 

described by the process (t) is to make the swimmer 

change direction, so that its active motion, 

intrinsically ballistic according to the first two 

equations in (1), turns into a diffusive one with 

persistence time t . Clearly, both assumptions, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

although adequate to model a generic active 

Brownian particle, fail to reproduce specific features 

of the swimmer’s propulsion mechanism that may 

well impact its diffusive properties. In particular, the 

finite spatiotemporal scales governing the propulsion 

mechanism suggest that changes in the orientation 

of the self-propulsion velocity do not necessarily 

imply body’s rotations. As a consequence, the vector 

v0 ought to be allowed to fluctuate around its average 

direction (the body’s axis of coordinate ) with 

non-zero relaxation time and variance. On the other 

hand, the self-propulsion speed, v0, results from the 

“effective” force exerted by the suspension fluid on 

the active surface of the particle at low Reynolds 

numbers (overdamped regime). Contrary to the case 

of an externally applied driving force, the center of 

such a force does not necessarily coincide with the 

particle’s center of mass. In general, the two centers 

are separated by a finite distance, which depends on 

the swimmer’s composition, geometry and surface 

functionalization.  

 

Figure-2: Swimmer’s self-propulsion mechanism: O and P are 

respectively the center of mass and the center of force of a spherical 

Janus particle. v0  represents the instantaneous self-propulsion 

velocity vector; and denote the angle between the OP axis and, 

respectively, the x axis and v0. The average direction of v0 is oriented 

parallel to OP. 



Usage Report for Fiscal Year 2015 

Based on the above analysis, we proposed following 

set of equation to describe motion of my 

micro-swimmer.  

�̇� = 𝑣0 cos(𝜙 + 𝜓) + √𝐷0𝜉𝑥(𝑡) 

�̇� = 𝑣0 cos(𝜙 + 𝜓) + √𝐷0𝜉𝑦(𝑡) 

�̇� =
−𝑣0 α

I α
sin(𝜓) + √

𝐷0

I α
𝜉𝜙(𝑡) 

      �̇� = −𝜅𝜓 + √𝐷𝜓𝜉𝜓(𝑡)         (2) 

We here assume that the center of force, P, and the 

center of mass, O, rest on a swimmer’s symmetry 

axis. The instantaneous self-propulsion velocity is 

oriented at an angle  with respect to the axis OP 

and fluctuates around it, with constant modulus, v0, 

and finite relaxation rate, , and variance, 
For 

convenience, (t) is thus described by a stationary 

Ornstein-Uhlenbeck process. Due to the propulsion 

force applied in P, the overdamped swimmer tends to 

rotate around its center of mass, subject to a torque 

with -dependent angular frequencyv0 sin, and 

moment of inertia I Other terms has same 

significance as equation (1). Based on the numerical 

solution of equation(2), we studied diffusion 

mechanism of micro-swimmer for various model 

parameter regimes.    

 

III. Methods  

Our studies are based on the numerical simulation of 

Langevin equations (1) and (2). Beside a few ideal 

cases, an exact analytical solution of the Langevin 

equation is impossible. One can overcome this 

difficulty by numerically solving the Langevin 

equations. We used Milstein algorithm [8] to 

numerically solve the equation (1) and (2). 

Appropriate boundary conditions have been used to 

account for the shape of the Janus particles and the 

structure of the confining walls. In addition to the 

thermal noise and self-propulsion, remaining 

physical force terms arise either due to intrinsic or 

externally applied forces have been incorporated into 

the Langevin description. 

 

 

II. Results and conclusions 

Diffusion of Janus particles in a fuel gradient and 

pseudochemotactic drift --  

We numerically investigate the motion of active 

artificial microswimmers diffusing in a fuel 

concentration gradient. We assume self-propulsion 

velocity is proportional to fuel concentration in the 

channel. When one looks at the transient dynamics 

immediately following the particle injection, a 

surprising outcome appears. We injected the particle 

at x = 0 and clocked the time it takes to hit either the 

right or left containment membrane. We repeated 

this numerical experiment N = 106  times and 

determined the probability the particle first reached 

the right or left exit, and the corresponding 

mean-first-passage times (MFPT), from 0 to •± L/2.  

   Our simulation results show that, in the steady 

state, the probability density of JPs accumulates in 

the low-concentration regions, whereas a tagged 

swimmer drifts with velocity depending in modulus 

and orientation on how the concentration gradient 

affects the self-propulsion mechanism. Under most 

experimentally accessible conditions, the particle 

drifts toward the high-concentration regions 

(pseudochemotactic drift). A correct interpretation of 

experimental data must account for such an 

“anti-Fickian” behavior. For more details about this 

work we refer [9]. 

Diffusion of Eccentric Microswimmers --- Based on 

numerical simulations and analytical arguments we 

analyze diffusion of eccentric micro-swimmer for 

different regime of model parameters. Our results 

show the diffusion of eccentric swimmers exhibits a 

much richer phenomenology. Its most intriguing 

properties can be listed as follows:  

 (i) Model based on equation (1) show that diffusivity 

of JPs is proportion to the square of v0. But eccentric 

micro-swimmers's diffusivity shows a transition from 

a quadratic to a linear dependence on v0. The linear 

regime for high values of v0 is peculiar of eccentric 

swimmers and disappears when centre of force 

coincide on the center of mass.  
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(ii) The square regime and linear regime in 

diffusivity versus v0 plots are separated by a plateau 

at some intermediate v0 values, which grows wider 

on increasing the eccentricity. 

 (iii)  Decreasing the rotational diffusion tends to 

suppress the quadratic regime in diffusivity versus 

v0 plots.  

These interesting results are of practical use for a 

correct analysis of the experimental data. The 

current estimates of the dynamical parameters v0 

and D of the standard model, 

Eqs. (1), are generally extracted from the direct 

measurement of the active diffusion process. Our 

analysis show that the combination of angular 

fluctuations of the propulsion velocity in the body 

frame and swimmer’s eccentricity, strongly modifies 

the dependence of the active diffusion constant on 

the swimmer’s propulsion parameters. As a 

consequence, the current procedure employed to 

extract the key quantities v0 and D would still be 

tenable, but only at sufficiently low Ds values, where, 

however, the experimental accuracy worsens. An 

experimental evaluation of the eccentricity effects 

may thus become advisable. For more details about 

this work we refer [10]. 

IV. Future Plan 

The following item is the main objectives for the next 

fiscal year which are the important and essential 

extension of our work done in 2015. 

Effect of hydrodynamic interaction and flow field in 

diffusion of Janus particle in confined system. 

Background and Purpose: In the diffusive dynamics 

of a system of self-propelled janus particles (whose 

mass and size are much larger than the surrounding 

solvent molecules) the host solvent mediated 

hydrodynamic interaction come into play in a 

significant way [2, 11]. Hydrodynamic effects on the 

Brownian dynamics in a confined geometry are quite 

different from the traditional bulk hydrodynamic 

interaction due to boundary effects [12].  One 

encounters such typical situations when studying 

diffusive behavior of colloidal particles in 

suspensions, protein dynamics in plasma 

membranes, and diffusion of large polymer 

molecules across a pore [12]. A detailed 

understanding of the underlying diffusive 

mechanisms of Janus particles  in confined 

geometries is required to explain their dynamics in 

heterogeneous media for applications in biological 

sciences.  Despite the potential demand, the 

problem of confined diffusion of self-propelled Janus 

particles in the presence of hydrodynamic 

interactions remains almost unexplored.  

 Objectives:  Our objectives here are twofold: 

Firstly, we want to explore diffusion dynamics of 

Janus dimer/trimer for different type of flow field 

(e.g., poiseuille flow and couette flow ) and confining 

geometry. Secondly, we want explore noise-induced 

phelomena, like, ratcheting, absolute negative 

mobility, stochastic resonance considering 

hydrodynamic interaction and flow filed.      

Method:  To this purpose dynamics of a system of 

active Brownian particles will be considered. Here 

motion of one particle induces a flow which acts on 

the adjacent particles and thus the dynamics 

becomes considerably complicated. Such complicated 

interactions are taken into consideration through 

diffusion tensor in Langevin simulation scheme. The 

effective force balance equation in overdamped limit 

is given by, 

𝑑𝑟 = [𝑢 +
1

𝑘𝐵𝑇
𝐷. 𝑓 +

𝜕

𝜕𝑟
. 𝐷] 𝑑𝑡 + √2𝐵 . 𝑑𝑤       (3) 

Here kB is Boltzmann’s constant and T is the 

absolute temperature. The vector r contains all the  

spatial coordinates of the particles that constitute 

the system and f is the force acting on the 

constituent particles. u represent unperturbed 

velocity filed which can be determined by solving can 

the incompressible Stokes flow problem with 

appropriate boundary condition. 

−∇𝑃 + 𝜂∇2𝑢 = 0                           (4) 

dw random number having Gaussian distribution 

with variance dt. The diffusion tensor D, is related to 

the coefficient of noise term by the following relation, 
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𝐵. 𝐵𝑇 = 𝐷       (4) 

 The diffusion tensor D is a nonlinear function of the 

instantaneous position of the all particles in the 

system. For a system of spherical particles it is 

possible to express diffusion tensor as a power series 

of inter-particle distances.  In lowest order 

approximation the diffusion tensor corresponds to an 

Oseen tensor [13] (and in the next to lowest order 

approximation is a Rone-Prager tensor [14]). In the 

confined geometry, the diffusion tensor is modified 

due to influence of the boundaries. Usually, 

boundary effects are important when the length 

scale of the confined system is the order of the size of 

the diffusing particle. To analyze boundary effects in 

the diffusion tensor we will follow the methods 

developed in ref [12], where authors considered the 

Green’s function for Stokes flow as a sum of 

free-space Green’s function and a correction which 

accounts no-slip constraint on the boundary surface. 

Thus, the velocity perturbation can be expressed as a 

function of the free-space Green’s function and 

corrections, and the velocity correction terms are 

determined from the solution of the incompressible 

Stocks flow problem.  

  Simulation technique: To address the objectives 

presented in beginning of this section, we shall 

numerically solve the Langevin equations (3) using a 

Milstein algorithm with appropriate boundary 

conditions to account for the shape of the Janus 

particles and the structure of the confining walls. 

Velocity field and diffusion tensor will be calculated 

by numerically solving incompressible Stokes flow 

equation (4) by finite element method.     

  Currently, I have a “Quick Use” user account and I 

would like to get extension of computation facilities 

for next usage term (up to 31st March 2017) in the 

same user category. 
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Fiscal Year 2015 List of Publications Resulting from the Use of the supercomputer 

 

[Publication] 

 

1.   Pseudochemotactic drifts of artificial microswimmers, P. K. Ghosh, Y. Li, F. Marchesoni, and F. 

Nori, Phys. Rev. E 92, 012114 (2015). 

 

2. Diffusion of eccentric microswimmers, Debajyoti Debnath, P. K. Ghosh, Y. Li, F. 

Marchesoni and B. Li,  Soft Matter, 12, 2017-2024 (2016). 

 

 

[Proceedings, etc.] 

None 

 

 

[Oral presentation at an international symposium] 

Our works have been presented in following international symposium:   

(a) The 7th International Conference on Unsolved Problems on Noise (UPoN-2015), Casa Convalescència, 

Barcelona, Spain, July 13-17, 2015.  

Title of talk: Active Brownian motion in confined geometries.  

(b) Colloquium at Department of Physics, University of Palermo, Italy, May 20th, 2015. 

Title: Active Brownian Motion 

(c) Conference on "New Horizons in Nonequilibrium Thermodynamics", 

Erice, Italy. October 26-30 2015. 

Title: The Thermodynamics of Active Brownian Motion 

 

 

[Others (Press release, Science lecture for the public)] 

None 
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