Project Title:

Prediction of Crystal Structure and Properties

Name: Yanming Ma, John Sak Tse, Zhi Li, Cheng Lu, OToshiaki Iitaka

Laboratory at RIKEN: Computational Astrophysics Laboratory

Recent research on the synthesis of hydrogen-rich binary metallic alloys at high pressure was stimulated by the proposal that these dense hydrogen alloys are potential superconductors with high critical temperatures, T_c . Indeed, very recently, a very high T_c of 190 K has been observed in hydrogen sulphide (H₂S) compressed to 200 GPa. During the fiscal year 2015, we have investigated several hydrogen-rich compounds by *ab initio* crystal structure predictions method and superconducting state have been found in a novel high-pressure polymorph of SiH₄.

We find that a three dimensional P3 structure becomes the most stable phase above 241 GPa. A prominent structural feature, which separates the P3 structure from previously observed/predicted SiH₄ structures, is that a fraction of hydrogen leaves the Si-H bonding environment and forms segregated H₂ units. The H₂ units are sparsely populated in the system and intercalated with a polymeric Si-H framework. Calculations of enthalpy of formation suggest that the P3 structure is against the decomposition into Si-H binaries and/or the elemental crystals. Structural stability of the P3structure is attributed to the electron-deficient multicenter Si-H-Si interactions when neighboring silicon atoms are linked together through a common hydrogen atom. Within the multicenter bonds, electrons are delocalized and this leads to a metallic state, possibly also a superconducting state, for SiH₄. The estimated T_c turns out to be 32 K at 300 GPa. An interesting outcome of the present study is that the enthalpy sum of SiH₄ (P3 structure) and Si (fcc structure) appears to be lower than the enthalpy of disilane (Si₂H₆) between 200 and 300 GPa (for all previously predicted crystalline forms of Si₂H₆),

which calls for a revisit of the stability of Si₂H₆ under

Fig.1. Enthalpy of formation ($\triangle H_{f}$, with respect to elemental crystals of H₂ and Si) for four Si-H stoichiometries calculated at 200 and 300GPa.

Structural search was performed to investigate the phase stabilities and structures of SrH_{2n} (n = 1-5) in the pressure range 50-300 GPa. The high-pressure polymorphs reveal a variety of hydrogen structural units ranging from monatomic hydride to linear and bent H₃ and spiral polymer chains. A novel graphene like H-layer structure was found to exist in SrH₁₀ at 300 GPa. The structural diversity in the predicted high pressure structures provides an opportunity for an in-depth analysis of the chemical bonding in the high pressure polyhydrides. It is shown from theoretical calculations that electronegativity of molecular hydrogen is similar to group 13 and 14 elements. This resulted in electrons being transferred from Sr to the hydrogen molecules. Thus, a consideration of the number of valence electrons available from Sr that can be shared among the H₂, serves as a useful guide to rationalize the structures of the H-moieties.

Usage Report for Fiscal Year 2015

Fig.2. The phase transition sequences of strontium polyhydrides and the reference phases at pressures of 50 to 330 GPa.

Usage Report for Fiscal Year 2015 Fiscal Year 2015 List of Publications Resulting from the Use of the supercomputer [Publication]

Wenwen Cui, Jingming Shi, Hanyu Liu, Yansun Yao, Hui Wang, <u>Toshiaki Iitaka</u> and Yanming Ma, "Hydrogen segregation and its roles in structural stability and metallization: silane under pressure", Scientific Reports 5, 13039 (2015).

http://www.nature.com/articles/srep13039

Ziwei Wang, Hui Wang, John S Tse, Toshiaki Iitaka and Yanming Ma , "Stabilization of H3+ in the high pressure crystalline structure of HnCl (n = 2-7) ",Chem. Sci. 6, 522-526 (2015). http://dx.doi.org/10.1039/C4SC02802C

Zhi Li, Jinwoong Kim, Nicholas Kioussis, Shu-Yu Ning, Haibin Su, <u>Toshiaki Iitaka</u>, Takami Tohyama, Xinyu Yang, Jiu-Xing Zhang, "GdN thin film: Chern insulating state on square lattice", Phys. Rev. B92, 201303 (2015).

http://dx.doi.org/10.1103/PhysRevB.92.201303

Jing-Jing Wang, Andreas Hermann, Xiao-Yu Kuang, Yuan-Yuan Jin, Cheng Lu, Chuan-Zhao Zhang, Meng Ju, Meng-Ting Si and Toshiaki Iitaka, "Exploration of stable stoichiometries, physical properties and hardness in the Rh-Si system: a first-principles study", RSC ADVANCES 5, 53497-53503 (2015). http://dx.doi.org/10.1039/c5ra08476h