GPU を用いた生体高分子の高速分子動力学計算

## 利用者氏名:〇中村 春木\*,\*\*,肥後 順一\*\*,神谷 成敏\*\*,笠原 浩太\*\*,真下 忠彰\*\*\* 所属:\*本所 情報基盤センター 技術開発ユニット \*\*大阪大学 蛋白質研究所

#### \*\*\*産総研

1. 本課題の研究の背景、目的、関係するプロジ ェクトとの関係 我々は、生体高分子系を含む一般の分子系におい て、遠距離力である静電相互作用を、Ewald 法を用 いずに高い精度で算出できる Zero-Multipole Summation 法を最近開発した(Fukuda (2013) J. Chem. Phys.)。中でも Zero-Dipole Summation (ZD) 法は、純水のような均一系でも、NaCl イオンの溶 融状態系でも、蛋白質や DNA 溶液のような不均一 系においても、12~14Å程度の短い距離で相互作 用をカットオフしても、良い精度で分子動力学計 算へ応用できることが確認された(Fukuda et al. (2012) J. Chem. Phys.; Kamiya et al. (2013) Chem. Phys. Lett.; Arakawa et al. (2013) PLoS One; Fukuda et al. (2014) J. Chem. Phys.)。さらに、 このアルゴリズムを MPI と GPU 内での二重の空間 分割手法を用いて並列化し、GPU システム用の CUDA プログラム (myPresto/psygene-G) を開発して高 速の分子動力学計算を可能にした(Mashimo et al. (2013) J. Chem. Theory Comput.)。この手法を 用いて、ATP の加水分解反応で得たエネルギーを使 って微小管に沿って滑り運動するモーター蛋白質 であるダイニンの系(ATP、ADP、水分子、 イオン原子を考慮すると約百万原子)やダイニン のストーク断片における複数の系(野生株と変異 体、Nishikawa et al. (2014) J. Mol. Biol.) に おける分子運動の観測や、マルチカノニカル計算 と組み合わせた蛋白質フォールディングの計算に は巨大な計算機資源が必要であるが、GPU を搭載し た理研スーパーコンピュータを使うことで可能と なる。

#### 2. 具体的な利用内容、計算方法

野生株の細胞質ダイニンのストーク断片に対して 得られた X 線結晶構造を用いて、溶液中の分子運 動を分子動力学法によりシミュレーションした (Nishikawa et al. (2014) J. Mol. Biol.)。野
生株のストーク断片との比較のため、配列保存度
が高いプロリン残基のアラニン二重変異体
(Pro3285Ala/Pro3409Ala)を野生株の構造を基に
作成した(図1)。



図1 ダイニンストーク断片の結晶構造 変異体を作成したプロリン残基(P3285, P3409) を球状モデルで示す。

作成した構造の周囲を水で満たした(box size = 177 x 64 x 71Å)。次に、イオンを生理食塩水(0.1 M)と同程度の濃度になるように、更に箱の中の総 電荷が0になるように、ナトリウムイオン48個、 塩化物イオン44個を配置した。最終的に、野生 株とアラニン二重変異体の原子数は、それぞれ、 77,901原子、77,893原子となった。

分子動力学計算には、我々が開発したプログラム psygene-Gを用いた。常温(300 K)、常圧(1 bar) における NPT シミュレーションで系を平衡化した 後、常温(300 K)におけるカノニカル分子動力学計 算を実施した。系の境界条件を周期的境界条件で、 静電相互作用を ZD 法で取り扱った。ZD 法のカット オフ距離を 12 Åとした。重原子と水素原子の間の 結合を SHAKE 法で拘束した。時間刻みを 1 fs とし た。

使用した PC クラスタ2ノード(pf07, pf08)には、 計8枚の GPGPU が搭載されている。計算系の x, y, z 成分をそれぞれ2分割することで系を8分割し、 これらの計算を各 CPU のプロセッサと GPU に割り 当てることで、8並列の計算を実行した。

### 平成 26 年度 RICC 利用報告書



図 2 にダイニンの主鎖の root-mean-square deviation (rmsd)トラジェクトリを示す。野生株 と二重変異体の rmsd は、2から12Åの間を揺 らいでおり、熱力学的な安定性は同等であること がわかった。



図2 ダイニン主鎖の rmsd トラジェクトリ 野生株の結晶構造に対する rmsd を黒、二重変異 体のモデリング構造に対する rmsd を赤で示す。

主成分解析によりダイニンの運動を解析した。第 一主成分の野生株と二重変異体の累積寄与率は、 それぞれ、48.3%,49.1%で、第一主成分がダイ ニンの運動に大きく寄与していた。第一主成分の 方向を図示すると(図3)、興味深いことに、野 生株と二重変異体の運動は異なっていた。野生株 では微小管結合部位の首ふり運動が、二重変異体 ではコイルドコイル構造の弓なり運動が見られ た。野生株の首ふり運動の方向は、ダイニンが滑 り運動をする微小管の長軸の方向と一致した。以 上から、この首ふり運動は、ダイニンが微小管の 正しい位置に結合する際に重要な役割を果たす と解釈できる。



図3 ダイニン主鎖の主成分解析 第一主成分が最大、最小構造と運動の方向を矢 印で示す。

### 4. まとめ

ダイニンのストーク断片の X 線構造を初期構造 として、野生株と二重変異体に対してそれぞれ 50 ns の溶液中における分子動力学シミュレーシ ョンを実施した。分子動力学シミュレーションを 高速かつ高精度で実行するために、ZD 法や空間 分割法を採用した psygene-G プログラムを用い た。得られたトラジェクトリを解析したところ、 野生株と二重変異体は、同等の熱力学的安定性で あったが、運動は異なっていた。野生株に見られ た微小管結合部位の首ふり運動は、ダイニンが微 小管の正しい位置に結合するために重要な役割 を果たすと解釈できる。

#### 5. 今後の計画・展望

psygene-G は、今回実施した 8 並列の分子動力学 計算にとどまらず、より高度な並列計算(例えば 64 並列)においても高いパフォーマンスが得ら れることが分かっている(Mahimo et al. (2013) J. Chem. Theory Comput.)。また、ストークの コイルドコイル構造の滑り運動を解析するため には、大きなエネルギー障壁を越える必要がある ため、マイクロ秒オーダーの長時間計算が必要で ある。可能であれば、64 並列以上の並列計算を 実施したい。

# 平成 26 年度 RICC 利用研究成果リスト

## 【論文、学会報告・雑誌などの論文発表】

Y. Nishikawa, T. Oyama, N. Kamiya, T. Kon, Y. Y. Toyoshima, H. Nakamura, G. Kurisu. "Structure of the entire stalk region of the dynein motor protein" *J. Mol. Biol.* (2014) **426**, 3232-3245.

# 【国際会議、学会などでの口頭発表】

N. Kamiya, T. Mashimo, Y. Takano, T. Kon, G. Kurisu, H. Nakamura. "Elastic property of dynein motor domain obtained from all-atom molecular dynamics simulations in explicit water" 59<sup>th</sup> Annual meeting for Biophysical Society, Feb. 10 (2015), Baltimore convention center, Baltimore, USA.