課題名(タイトル):

光合成のメカニズムの解明と生体膜のシミュレーション

利用者氏名:〇緒方 浩二*、打田 和香* 所属:*イノベーション推進センター 中村特別研究室

1. 本課題の研究の背景、目的、関係するプロジェ クトとの関係

本研究課題に於いては、次の三つのテーマに関して研 究を行った。

- (1) 光合成蛋白質 PSII の酸素発生機構の解明
- (2) 生体膜の力場パラメータの改良
- (3) 生体系キノン化合物の酸化還元反応機構の解析

1.1 光合成蛋白質 PSII の酸素発生機構の解明

光合成蛋白質 PSII 及び活性中心の構造は X 線結晶構 造解析により明らかになっているが、そのメカニズム は未だに解明されていない。我々は MD シミュレーシ ョンにより活性中心までの水の供給経路を同定し、更 に新たなる水の経路を見つけ出すことが出来た(Ogata et al. J. Am. Chem. Soc., 135, 15670–15673, 2013)。現在、 この MD シミュレーションを継続し、このシミュレー ションから水の経路を通過する水の動きと PSII の揺ら ぎの関係の調査を行い、PSII が作る場と酸素発生機構 との関係について解析を行った。

図 1.1 PSII 活性近傍のシミュレーションにおけ る水の配置

1.2 生体膜の力場パラメータの改良

昨年は ricc を使用して、生体膜を構成している脂質

であるフォスファチジルコリン(PC)とフォスファチジ ルエタノールアミン(PE)の単一脂質二重膜のシミュレ ーションを行った。その結果、シミュレーションにお ける相転移温度を同定し、各相における脂質のコンフ オメーションを原子レベルで解析することが出来た。 これらの解析の結果、実験結果から示唆されている構 造と似たものであることが分かり、各相における原子 レベルで脂質のコンフォメーションを提示行った。ま た、単一 DPPC 二重膜におけるリップル相が生成され るメカニズムの解明を試みた。その結果、ゲル相にお けて、DPPC の上と下の層がお互いに逆方向に動き出す 運動が観察され、この力がリップルを形成する一つの 要因であることをシミュレーションにより示唆した。 しかし、シミュレーションで得られた相転移温度は実 験値と比べて 50 K 程高く、生体のシミュレーションで 設定している 300 K に於いては、本来示すはずの脂質 の構造とは異なったものであった。そこで本研究に於 いて、脂質二重膜の相転移温度を再現するように力場 パラメータの改良を行った。

1.3 生体系キノン化合物の酸化還元反応機構の解析

光合成で電子伝達体として機能しているプラストキ ノンは酸化還元反応を行うことで電子を伝達している。 その類似物質である、他の生体系キノンも同様に、酸 化還元反応を行うことで、電子伝達を行っている。本 研究ではそれら生体系キノンのうち、ピロロキノリン キノンに着目し、量子化学計算を用いて水溶液中にお けるピロロキノリンキノンによるグリシン酸化反応機 構の解析を行った。

2. 具体的な利用内容、計算方法

2.1 光合成蛋白質 PSII の酸素発生機構の解明

PSII とチラコイド膜のモデルは、文献(Ogata et al. J. Am. Chem. Soc., 135, 15670–15673, 2013) に示すものを

用いた。このモデルは、PSII 複合体の構造を天然のチ ラコイド膜を忠実に再現したもので、そのサイズは 275 Å×195 Å×225 Å である。このモデルを用いて、25ns の MD シミュレーションを行い、MD シミュレーショ ンから得られるトラジェクトリの解析を行った。本研 究に於いて、すべての MD シミュレーションは amber ソフトウェアパッケージを用いて行った。

2.2 生体膜の力場パラメータの改良

現在求められている脂質の amber 力場のパラメータ を用いて、温度を上げながらシミュレーションを行う と、相転移点が実験値よりも 50 K 前後高い値に観察さ れる。そのことを解決するために、DPPC に関して、シ ミュレーションの相転移温度が実験値に近い値になる ようにアルキル鎖の炭素と水素の vdW のポテンシャル の深さを表す well-depth の値にかけるある係数αに関し て、αの最適な値を求めることを行った。また、得られ たパラメータを用いて、DOPC と POPC、DSPC、DPPE、 及び、POPE に関してシミュレーションを行い、最適化 したパラメータの効果を確認した。シミュレーション は、10ns 毎に 5K 温度を上昇させて行く方法を用いた。 また、相転移は、脂質二重膜に於ける脂質一分子あた りの面積を示すALとアルキル鎖の二面角が gauche を示 している割合を示す R_Fの二つの指標により、その同定 を行った。改良するパラメータは、脂質のパラメータ セットである GAFFlipid と化合物など広く使用されて いるパラメータである GAFF に関して行った。 GAFFlipid に関しては、アルキル鎖の水素の well-depth がすでに小さな値を示しているので、炭素の well-depth のみの変化を考慮した。また、GAFF に関しては、アル キル鎖の炭素と水素両方の well-depth の変化を考慮し た。

2.3 生体系キノン化合物の酸化還元反応機構の解析

ピロロキノリンキノンによるグリシン酸化の反応機
構 (stepwise, concerted) を検討した(図 2.1)。それらの
反応の始状態、中間体、終状態、そして遷移状態を
Gausian09 により求めた。

図 2.1 ピロロキノリンキノンによるグリシン酸化反応 の反応機構

3. 結果

3.1 光合成蛋白質 PSII の酸素発生機構の解明

図 3.1 は 25ns のトラジェクトリから得られた水の分布 を示している。赤い点がシミュレーションに於いて、 水が位置していたとこで、Mn₄O₅Ca を中心に外に向け て水のパスが存在することが観察される。また、PSII 外部から内部へと動いた水と、内部から外部へ移動し た水の軌跡が観察されている。

図 3.1 Mn₄O₅Ca 近傍の水の分布

これらの水のパスの中で、PSII 二量体の中心に伸びているパスは、一昨年度論文で発表した新たに見出した

水のパスと同じもので、今回、新たに Mn₄O₅Ca から外 側に伸びるパスがシミュレーションで確認された。こ のパスは、文献などで示唆されているもので、制約な しのシミュレーションで初めてそのパスが機能してい ることが示された。

次に、MD シミュレーションのトラジェクトリを基に、 主成分分析により分子の揺らぎの方向の解析を行った。 図 3.2 にその結果を示す。ここで、図 3 に対して、向か って左側の Mn₄O₅Ca と同じ方向に揺らいでいる残基を 青、また、向かって右側の Mn₄O₅Ca と同じ方向に揺ら いでいる残基を赤の矢印で示している。図に示すよう に、Mn₄O₅Ca はお互いに反対方向に揺らいでいること が分かる。また、右側及び左側の Mn₄O₅Ca に共鳴して いる残基はそれらの周辺に位置していることが観察さ れる。これらの結果から、Mn₄O₅Ca を中心にその周り の残基は反対方向に揺らいでいることが分かった。こ れらの揺らぎは、水の供給、排出に関わっている可能 性がある。

図 3.2 主成分分析によるアミノ酸及び Mn₄O₅Ca の揺 らぎの方向

3.2 生体膜の力場パラメータの改良

図 3.3 と図 3.4 に GAFFlipid、及び、GAFF を用いた 時の $A_L \ge R_F$ のグラフを示している。これらのグラフ から、温度上昇のシミュレーションに於いて、温度変 化に伴って、脂質膜の相が変化していることが解る。 特に、高い温度帯に於いて、DPPC と DSPC、DPPE、 POPE は急激に A_L 及び R_F の値が上昇していることが解 る。これらのグラフが急激に変化している温度がシミ ュレーションに於ける相転移温度であることが解る。 実際に脂質のコンフォメーションを観察すると、低い 温度帯に於いては、伸びきった脂質のアルキル鎖が規 則正しく並んでいるのに対して、相転移点を境にアル キル鎖が無秩序な状態に変化している。このことは、 実験により示唆されている脂質のコンフォメーション と類似しており、シミュレーションに於いて相転移点 を再現できたことを意味している。

図 3.3 GAFF1ipid を使用した MD シミュレーションの $A_L \ge R_F$ のグラフ

図 3.4 GAFFlipid を使用した MD シミュレーションの A_Lと R_Fのグラフ

図 3.3 と 3.4 の解析により得られた各脂質の相転移温度 を表 3.1 に示す。この表から GAFFlipid を用いたシミュ レーションで得られた相転移温度は実験値と比べても 50K 前後高い温度に現われていることが解る。更に、 GAFFを用いたシミュレーションに於いては、大きなも ので 80K 近くの実験地との差異が観察される。従って、 これらのパラメータをそのまま用いたシミュレーショ ンは、脂質の構造が実際に与えた温度とは異なったコ ンフォメーションを取っている可能性が高く、結果と してシミュレーションの大きな誤差を生じることにな る。これらの誤差を少なくするためにパラメータのフ ィッティングが必要であり、以下、その方法に関して 述べる。

表 3.1 GAFFlipid と GAFF を用いたシミュレーション における相転移温度

Experiment	GAFFliipd	GAFF
314.15	358	403
253.15	303	318
328.15	373	418
271.15	313	353
336.15	388	< 418
298.15	343	< 378
	Experiment 314.15 253.15 328.15 271.15 336.15 298.15	ExperimentGAFFliipd314.15358253.15303328.15373271.15313336.15388298.15343

図 3.5 は GAFFlipid を用いたシミュレーションに関して、 vdW の係数の最適化を行った結果を示す。ここで行っ たシミュレーションは温度を 303K から 323K まで変化 させて、70 ns のシミュレーションからその相転移温度 を求めた。図 3.5 に示すように、係数 α が小さなときは 相転移点が低いところに現われ、逆に、大きなときは 高い温度に現われることが確認できる。これらのグラ フから最適な α の値は、DPPC の主相転移点は約 314.15K であり、 α =4/8 であることが解る。

図3.5 GAFFlipidのパラメータフィッティングの結果

図 3.6 は GAFF のパラメータを変えた場合の相転移温度 の概要を示している。この図から係数の微小な変化に 対して、相転移温度は過敏に反応することが解る。例 えば、 α_{c3} =5/8、 α_{hc} =5/8 に於いて相転移温度は 303K 以下 に現われたが、炭素の係数を少し大きくした α_{c3} =6/8、 α_{hc} =5/8 に於いては、相転移点が 328K よりも大きな温 度に現われている。これらの値の中で、 α_{c3} =4/8、 α_{hc} =8/8 と α_{c3} =6/8、 α_{hc} =4/8 の二つの組み合わせの相転移温度が 実験値に近い値を示していることが解る。

図 3.6 GAFF のパラメータフィッティングの概要

図 3.7 と図 3.8 は上で求めた最適な GAFFlipid と GAFF のパラメータを用いた場合のシミュレーションのそれ ぞれの結果を示す。これらのグラフと図 3.3 及び 3.4 を 比較すると全体的にグラフが低い温度帯にシフトして いることが確認される。また、相転移温度もオリジナ ルのパラメータを用いた場合に比べて、低い温度に現 われていることが確認される。これらの結果から、本 研究において、相転移温度を考慮したパラメータフィ ッティングが成功したことを意味している。

図 3.7 フィッティングを行った GAFFlipid のパラメー タを用いたシミュレーション結果

図 3.8 フィッティングを行った GAFF のパラメータ を用いたシミュレーション結果

表 3.2 最適な GAFFlipid と GAFF を用いたシミュレー ションにおける相転移温度

Lipids	Exp.	GAFFliipd	GAFF ¹	GAFF ²
DPPC	314.15	323	318	313
DOPC	253.15	243	253	243
DSPC	328.15	328	323	323
POPC	271.15	283	288	293
DPPE	336.15	338	338	328
POPE	298.15	303	283	293
$1 \text{ GAFF}(\alpha_{c3}=4/8, \alpha_{hc}=8/8)$ ² GAFF($\alpha_{c3}=6/8, \alpha_{hc}=4/8$)				

3.3 生体系キノン化合物の酸化還元反応機構の解析

(a)Stepwise reaction

stepwise reaction の第一段階の反応(求核攻撃)(図 2.1(a)上段左と下段左)の活性化エネルギーを比較した。 その結果、C5に求核攻撃する可能性が高いことが解っ た。次に、第二段階の反応(プロトン移動)(図 2.1(a) 右)の活性化エネルギーを比較した。その結果、O5A にプロトン移動する可能性が高いことが解った(図 3.9)。

(b)Concerted reaction

concerted reaction では2つの経路を検討した(図 2.1(b))。 その結果、各経路とも活性化エネルギーが高いことが 解った(図 3.10)。

4. まとめ

4.1 光合成蛋白質 PSII の酸素発生機構の解明

本研究に於いて、25ns の MD シミュレーションを実行し、 Mn_4O_5Ca 近傍の水の分布を観察することが出来た。それらの分布から、実際に PSII に出はいりしている水を観察することが出来、それらの水が Mn_4O_5Ca で分解される水である可能性が有り、これらの水の軌跡を追うことにより、水の供給経路である可能性があることを示唆することが出来た。

4.2 生体膜の力場パラメータの改良

上記の結果から、実験値を反映して MD シミュレー ションのパラメータを得ることが出来た。これらのパ ラメータは、実験値と比べて 15K 前後の誤差となり、 実際にシミュレーションで用いられている 300K に於 いては、脂質のコンフォメーションは実際のものと類 似したものであると考えられる。これらのパラメータ を用いて生体膜に埋もれた蛋白質のシミュレーション を行うと、既存のパラメータを用いた時よりも良い精 度でシミュレーションを行うことが出来ることが期待 できる。

4.3 生体系キノン化合物の酸化還元反応機構の解析

本研究ではグリシン酸化反応の反応機構を検討した。 stepwise reaction と concerted reaction の 2 つの反応機構 を検討した。concerted reaction はエネルギーの観点から 反応進行が難しいと示唆された。stepwise reaction では エネルギーの観点から、C5 に求核攻撃し、O5A にプロ トン移動する可能性が高いことが示唆された。

5. 今後の計画・展望

5.1 光合成蛋白質 PSII の酸素発生機構の解明

現在の 25ns のシミュレーションのトラジェクトリを 用いて、エネルギー移動の経路を観察することを考え ている。もしも、25ns のシミュレーションで観察でき ない場合は、もう少し長いタイムスケールの MD シミ ュレーションを行い、解析を行うことを予定している。

5.1 生体膜の力場パラメータの改良

改良したパラメータを用いて、膜蛋白質と膜の相互 作用を解析することを計画している。実際の生体膜を 模倣した脂質二重膜のモデルを作成し、その脂質二重 膜の温度に対する挙動に関して観察を行うことを計画 している。 平成 26 年度 RICC 利用研究成果リスト

【論文、学会報告・雑誌などの論文発表】

- <u>Ogata, K.</u>, <u>Uchida, W.</u>, and Nakamura, S. All-atom Molecular Dynamic Simulation of Phospholipid Bilayer for Understanding in Atomic Details across Thermal Phases, *J. Phys. Chem. B.*, **118**, 14353-14365, 2014. (査読有)
- Yang, J., Hatakeyama, M., <u>Ogata, K.</u>, Nakamura, S., and Li, C. A Theoretical Study on the Role of the IIA Metal Ions (Ca²⁺, Sr²⁺, Mg²⁺) at the S₂ State in Photosystem II S2. J. Phys. Chem. B, **118**, 14215-14222, 2014. (査読有)
- <u>Uchida, W.</u>, Wakabayashi, M., Ikemoto, K., Nakano, M., Ohtani, H., and Nakamura, S. Mechanism of glycine oxidation catalyzed by pyrroloquinoline quinone in aqueous solution. *Chem. Phys. Lett.* 620 13-18, 2015
- 1. 緒方浩二、 畠山允、打田和香、中村振一郎 第26回光合成学会(奈良), 2014