課題名(タイトル):

て研究を行った。

光合成膜蛋白質 PSII と脂質二重膜のシミュレーション

利用者氏名: 〇緒方 浩二, 打田 和香

所属:イノベーション推進センター 中村特別研究室

本課題の研究の背景、目的、関係するプロジェクトとの関係本課題に於いて、我々は次の二つのテーマに関し

(1) 光合成の S1 状態に於ける水の供給、及び、排出経路の同定

(2) 脂質二重膜のシミュレーション

以下、それぞれのテーマの詳細を述べる。

(1) 光合成の S1 状態に於ける水の供給、及び、排出 経路の同定

光合成の初期過程を担っている膜蛋白質 Photosystem II (PSII)は、チラコイド膜に存在する 20 個のサブユ ニット(総分子量 350kDa)を持つ複合体蛋白質で、 光エネルギーを利用して水の酸化を行っている。そ の構造は X 線構造結晶解析法で決定され、Protein Data Bank(PDB)上で公開されている(図1)。

図1 (a) 1.9Å で解かれた PSII の構造(Umena et al., *Nature*, **273**, 55, 2011).

光エネルギーを利用した水の酸化反応は、PSII の 内部にある Mn クラスタと呼ばれる Mn₄O₅Ca 錯体と 周りの残基の協調により、周期的な 5 つの状態 $(S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_0)$ を経て行われる。具体的 には、外部から PSII 内部に取り込まれた水分子が Mn₄O₅Ca 錯体によって酸化され、酸素分子とプロト ン、エレクトロンに分解される。この時生成された 酸素分子は PSII の外部に放出される。また、プロト ンとエレクトロンはそれぞれ ATP 合成酵素とチトク ロム b₆f に受け渡され、ATP と NADPH を生成する反 応に使用される。これらの反応の詳細は未だ不明な 点が多い。そこで計算機を用いて、我々の最初の試 みとして水の排出経路と供給経路を同定することを 目的とし、チラコイド膜に PSII を配置し、その分子 動力学シミュレーションを行った。

(2) 脂質二重膜のシミュレーション

生体膜は二層の脂質が会合した脂質二重膜から成 っている。生体の細胞膜の挙動を観察することは非 常に困難である。従って、そのモデルケースとして 単一の脂質から成る単一脂質二重膜の実験が盛んに おこなわれている。単一脂質二重膜の熱に対する挙 動は実験的に観察されており、それらの相転移温度 などが解明されている。しかし、単一脂質二重膜に 於ける各相の原子レベルでの振舞いは解明されてい ない。従って、シミュレーションにより各相の原子 レベルでの振舞いを観察することは、脂質二重膜の 熱に対する揺らぎなどを理解する上で非常に有用で ある。我々は、DPPC と DPPE 二重膜に関して MD シミュレーションを行った。MD シミュレーション に於いては、温度を徐々に上げていき各相を動的な 動きの解析を行い、すべての相での分子の動きなど の観察を行った。

2. 具体的な利用内容、計算方法

(1) 光合成の S1 状態に於ける水の供給、及び、排出 経路の同定

PSII 複合体の構造を天然のチラコイド膜を忠実に 再現したモデルに配置し、更に、それらを水のボッ クスの中に入れたモデルの作成を行った。系のサイ ズは 275 Å×195 Å×225 Å であり、シミュレーショ ンに於いては比較的に大きなサイズである。 チラコイド膜のモデルは、約 30 種類の脂質から構成 されている。これらの脂質の力場を作成するために、 それぞれの脂質に対して 1000 個程度のコンフォメー ションを MD シミュレーションにより発生させ、更 に、量子化学計算を行い力場の作成を行った。また、 PSII と結合しているリガンドに関しても力場の作成 を行った。それらの力場を用いて、PSII 複合体とチ ラコイド膜からなるモデルの10 nsのMD シミュレー ションを行った。MD シミュレーションは amber ソ フトウェアパッケージを用いた。

(2) 脂質二重膜のシミュレーション

DPPC または **DPPE** を xy-平面に 8×8×2 個並べた 脂質二重膜のモデルの作成を行った。更に、4000 個 弱の水分子を配置して、水和した脂質二重膜のモデ ルの作成を行った。

次に、作成された脂質二重膜のモデルの MD シミ ュレーションを行った。シミュレーションは 263 K の温度から始めて、10 ns 毎に 5 K ずつ温度を上昇さ せていき、418 K になるまで、合計 330 ns のシミュ レーションを行った。

得られたトラジェクトリからシミュレーションに おける相転移温度を定めた。また、一つの脂質が脂 質二重膜上に占める表面積の大きさ(A_L)やアルキル 鎖のねじれ角がゴーシュ型を占める割合(R_F)などの 解析により、sub 相転移温度や pre 相転移温度などの 同定を行った。更に、各相における脂質のコンフォ メーションの解析を行った。

3. 結果

(1) 光合成の S1 状態に於ける水の供給、及び、排出 経路の同定

我々は、チラコイド膜に配置した PSII の MD シミ ュレーションから、今までに報告されていなかった 新たな水の排出または供給経路を見出すことが出来 た(図 2 中の Path2-2; Ogata et al. J. Am. Chem. Soc., 135, 15670–15673, 2013)。この経路は PSII 外部からの 距離が非常に短く、また、水の排出において、直接 関与しているアミノ酸残基の同定を行うことが出来 た。この水の排出経路を調整することが出来れば、 水の酸化反応の調整ができ、高活性の PSII 変異体を 設計できる可能性がある。

図2 水の供給および排出経路

(2) 脂質二重膜のシミュレーション

DPPC のシミュレーションの結果、図 3 に示すよ うに結晶(L_c)相→ゲル(L_β)相→液晶(L_α)相への変化を 観察することが出来た。また、DPPE に関しては、結 晶相→液晶相への変化を観察することが出来た。

図 3 (A) DPPC と(B) DPPE の各相とその温度

図4に示すように A_Lや R_Fの温度に対する値から もシミュレーションに於ける主相転移温度を観察す ることができる。特に、差分のグラフから、主相転 移点を表す明らかなピークを観察することが出来る。

図4 温度変化に対する(a) A_Lと(b) R_F、及び、それら の差分(a') |ΔA_L|と(b') |ΔR_F|のグラフ

図5は脂質のxy平面に対する角度と上段と下段の 脂質がなす角、更に、脂質同士がxy平面上でのなす 角を示している。

図5 (a) 脂質の xy 平面の角と(b) 上段と下段の脂 質の角度、(c) 上段と下段の脂質の xy 平面上でのな

す角

これらのグラフを観察すると、DPPC に関しては 338 Kでグラフが変化していることが観察される。ま た、338 K ~363 K, 363 K ~373 Kでそれぞれ異なっ たグラフが観察される。これらの変化から、338 Kと 363 K, 並びに 373 K をそれぞれ、sub, pre, main 相転 移点に対応することが解った。また、DPPE に関して は、383 K でグラフが変化していることが観察され る。この温度が DPPE に於ける主相転移であること が解る。

図6はDPPCのxy平面上での動きを表している。 この図から液晶相では動きがほとんど無いことが解 る。それに対して、ゲル相ではお互いに逆方向に動 いていることが観察される。この動きは DPPE には 観察されなかった。

図 6 DPPC の結晶相と L_{β} 相の (a) 上段と (b)下段の 脂質の動き。U1~U3 と L1~L3 は上段と下段から無 作為に選んだ脂質とその隣接している脂質を表して いる。青は液晶相、また、赤はゲル相での動きを表 す。

また、DPPE には DPPC には存在するリップル(P_{β})相 が観測されていないことから、この動きは DPPC が ゲル相からリップル相への相転移を行う上で重要で あると考えられる。そこで我々は、少し大きな系 ($18 \times 18 \times 2$)を用いて313 Kから温度を5度ずつ挙げた 時に363 K でリップル相のコンフォメーションを形 成するか否かを確かめるシミュレーションを行った。

図 7 は少し大きな相でのシミュレーションによる コンフォメーションを示している。この図から DPPC の脂質膜はリップル相のコンフォメーションと似た ものが観察される。これは我々のシミュレーション に於いて 368 K でリップル相を再現出来たことを示 している。このトラジェクトリを解析した結果、ゲ ル相において温度の上昇とともに DPPC が回転し、 その後に並進運度が起こることが観察された。それ と同時に脂肪酸部分が溶けた脂質が並進運動を止め、 更に、周りの脂質がその脂質を押すことによりリッ プル相の構造が現れることが観察された(図 7)。従っ て、 L_{β} 相に於ける並進運動を、はゲル相からリップ ル相へ相転移を行う上で重要な動きであると考えら れる。

図7 リップル相が起きるメカニズムの仮説

上記の仮説を検証するために結晶相→リップル相 に温度を変化するようなゲル相がないシミュレーシ ョンを行った。それらの結果を図8に示す。

図 8 (a) 結晶相→ゲル相→リップル相と(b) 結晶相 →リップル相のシミュレーション結果

図 8 から上記でも述べたように、ゲル相からリッ プル相に相転移を行ったシミュレーションはリップ ル相のコンフォメーションを取っているのが観察さ れる。一方、結晶相からリップル相まで温度をいっ きに上げたシミュレーションは図の上段の層にリッ プルの構造が観察されず、リップル相の構造にはな らなかった。また、図 8 の(a)に於いては、脂肪酸が 溶けた脂質の割合が 50%前後に対して、(b)のシミュ レーションに於いては、脂肪酸が溶けた脂質の割合 が 80%前後になり、殆どの脂質が溶けた状態になっ ている。これらの結果から、リップル相の構造を作 成するためにはゲル相の構造に於いて、図 7 に示す ようにお互いに異なった方向に力が働く必要がある ことが考えられる。以上の結果は現在論文投稿中で ある。

3. まとめ

(1) 光合成の S1 状態に於ける水の供給、及び、排出 経路の同定

我々は、チラコイド膜を再現したモデルに PSII 複合 体を配置して MD シミュレーションを行った。その結 果、今まで報告されていなかった水の供給、及び、排 出経路を見出すことが出来た。また、プロトンと酸素 の排出経路も同時に示唆することが出来た。

(2) 脂質二重膜のシミュレーション

我々は、DPPCとDPPEの単一脂質二重膜のシミュレ ーションに於いて、主相転移を観察することが出来た。 DPPCに関しては、3回の相転移、DPPEに関しては、1 回の相転移を観察することが出来、さらに、各相の構 造を解析することが出来た。これらのシミュレーショ ンで得られた脂質の構造が実験で想像されている各相 に於ける構造と一致していることが確認された。

4. 今後の計画・展望

PSII 複合体の MD シミュレーションに関しては、も う少し長い時間のシミュレーションを行い、複合体の 動きの相関や各サブユニットの動きの相関、更に、PSII とリガンドや水との相関などの解析を行う。

脂質の MD シミュレーションに関しては、色々な脂 質の力場を作成し、実際の細胞膜を模倣したモデルの シミュレーションを行う。それらのシミュレーション により、水や酸素などの小分子の細胞膜の透過性など を観察することを考えている。 平成 25 年度 RICC 利用研究成果リスト

【論文、学会報告・雑誌などの論文発表】

<u>Ogata, K.</u>, Yuki, T., Hatakeyama, M., <u>Uchida, W.</u>, Nakamura, S. All-Atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. *J. Am. Chem. Soc.*, **135**, 15670–15673, 2013.