課題名(タイトル):

細胞運動の生体力学シミュレーション

利用者氏名:坪田 健一

所属:和光研究所 基幹研究所 連携研究部門 理研-HYU 連携研究センター 超精密加工技術開発チーム

1. 背景と目的

細胞の受動的な変形運動を理解するためには,周囲 の力学環境に対する細胞の変形運動挙動を明らかにす る必要がある.この受動的な細胞運動の1つとして, これまで,せん断流れにおける単一赤血球の変形運動 シミュレーションが行われてきた.そこでは,赤血球 膜の弾性変形と,赤血球内外の粘性流れとの連成解析 が必要となる.本年度は,境界要素法を用いて,弾性 細胞膜と粘性流れとの連成解析手法を開発した.これ を用いて,せん断流中の赤血球のタンブリング(T)-タ ンクトレッディング(TT)運動遷移について,赤血球膜 の弾性変形の役割を検討した.

2. 赤血球の釣合形状の力学シミュレーション

血液や等張液の静止流体中で,正常な赤血球は両凹 円盤形を,異常な赤血球は球形,カップ形や突起を有 した形状を,それぞれ示す.この形は,赤血球内外の 浸透圧差に応じた細胞膜の弾性変形の結果と見なすこ とが出来る.本章では,赤血球の運動シミュレーショ ンへの準備として,両凹円盤形状の赤血球を力学的に モデル化する.

細胞膜は、三角形要素を用いて離散的に表現し、面 内のせん断弾性と面積弾性、および面外の曲げ弾性を 考慮した⁽¹⁾. 面内の変形は、Skalak et al.⁽²⁾にしたが い、

$$T_1 = G \frac{\lambda_1}{\lambda_2} [(\lambda_1^2 - 1) + C \lambda_2^2 (\lambda_1^2 \lambda_2^2 - 1)].$$
(1)

ここで、 T_1 [N/m]は主合応力、 λ_1 および λ_2 ($\lambda_1 \ge \lambda_2$)は主 ストレッチ、G [N/m]はせん断弾性係数、Cは面積弾性 を決定する定数であり、 T_2 は右辺で下付の添字1と2を 入れ替えた式によって表される. 面外の曲げ変形は、 ばねモデル⁽³⁾⁽⁴⁾を採用して、全エネルギーを

$$W_{\rm B} = k_{\rm B} N_l \sum_{l=1}^{N_l} w_l \left[1 - \cos\left(\theta_l - \theta_{0\,l}\right) \right],$$

where weighting $w_l = \frac{L_l}{\sum_{l=1}^{N_l} L_l}$ (2)

と記述した.ここで、 θ_1 は辺1を挟んで隣り合う2つの

三角形要素の外向き法線がなす角度, 6, は自然角度, L

は辺lの長さ、 N_l は辺の総数、 k_B はばね定数である. ば ね定数 k_B は、等方曲げモデル⁽⁵⁾における曲げ剛性 $B[N \cdot m]$ に換算できる⁽⁶⁾.実測値にしたがい、赤血球の 膜面積を $A_0 = 94.1 \, \mu m^2$ 、体積を $V_0 = 134.1 \, \mu m^2$ とした⁽¹⁾. 膜の自然状態は、形状の不均一性を示すパラメタ α (0 ≤ α ≤ 1)を用いて以下のように決定した⁽³⁾.

$$\boldsymbol{r}_{i}^{0} = \boldsymbol{r}_{i}^{Sphere} + \alpha \left(\boldsymbol{r}_{i}^{BD} - \boldsymbol{r}_{i}^{Sphere} \right)$$
(3)

ここで、 r_i^0 , r_i^{sphere} および r_i^{sp} [m]は膜上の計算点iの 位置ベクトルであり、上付きの0は自然状態、*Sphere*は 表面積 A_0 を持つ球形、および*BD*は体積 V_0 および表面積 A_0 の両凹円盤形を示す. α を変化させることで、球形 ($\alpha = 0$)と両凹円盤形($\alpha = 1$)の間の形を連続的に表現 した.

本研究では、式(3)の自然状態を、式(1)に示す面内せ ん段変形に対してのみ考慮することとし、式(2)の曲げ 変形については、平面の自然状態を仮定して $\theta_{01} = 0$ [rad]とした. また, 膜の強い非圧縮性を表現す るために式(1)においてC = 100とした. 膜面積A.と体積 V₀の制約条件の下で, G, B, aを与えて細胞膜の弾性変 形問題を解いて釣合形状を求めた^{(3),(4)}.また,複数の釣 合形状が得られた場合は,弾性エネルギーがより小さ い方の形状を釣合形状と定義した. GとBの比がシミュ レーション結果を決定するため(4),以下では, **G* = Gl²/B**(*l* = 1 µm: 膜形状の特徴曲率半径)を用 いて結果を整理した.また,弾性定数の実験値 $G = 2.5 \times 10^{-6} \text{ N/m} (= G_0)$ お よ てバ $B = 2.0 \times 10^{-19} \text{ N} \cdot \text{m} (= B_0)$ に対する $G^* = 12.5 \text{ c} G_0^*$ と 記述する.

シミュレーションの結果, Fig. 1 に示すように, α お よび**G***が大きい時に両凹円盤(BD)形が, α および**G***が小 さい時にカップ形が, それぞれ釣合形状として得られ た. $\alpha = 0$ で BD 形を得るためには, **G*** < 4.5 ($B = B_0$

平成 24 年度 RICC 利用報告書

Fig. 1 Phase diagram of equilibrium shape of red blood cell as functions of α and G^*

 G_0 より小さい必要があった.これは,既報⁽³⁾⁽⁴⁾⁽⁷⁾にある ように,自然状態が球形であることと,実験値 G_0 およ び B_0 との間の矛盾を示している. $G^* = G_0^*$ の時に BD 形 を得る条件は $\alpha > 0.23$ であった. BD 形は, G^* が大き い程,また α が小さい程,非対称性⁽⁸⁾が顕著となった.

3. せん断流中の T-TT 運動遷移シミュレーション

せん段流中の赤血球は、赤血球全体が剛体のように 回転するタンブリング(T)運動、および全体が一定の形 を保ちながら膜面がキャタピラのように回転するタン クトレッディング(TT)運動を示す.また、TT 運動は赤 血球全体の回転振動(S)を伴う.せん段応力 $\mu\gamma$ が小さい 時にT運動が、大きい時にTT運動が、それぞれ生じ、 2 つの運動が遷移するのは $\mu\gamma = ~0.1 \text{ Pa}$ の時である⁽⁹⁾. 本章では、 α およびGに応じたT運動およびS運動を伴 う TT 運動と、両者の遷移挙動を示す.

 $G^* = 0.27 G_0^* = 3.8$ とし, BD 形の赤血球モデルを $0 \le \alpha \le 1$ の異なる α 値に対して作製した.この赤血球 を,せん断速度 γ の一様せん断流場に配置した.ここで, 体積 V_0 の球の半径2.8 µmを特徴長さ α とした.赤血球内 外の流体の粘度比は0.2とした.ストークス流れを仮定 し,膜の弾性変形と非圧縮粘性流れとの連成解析は境 界要素法⁽¹⁰⁾を用いて行った.シミュレーション結果を 決定するキャピラリー数Ca = µa γ /Gの値は,Gを変化 させることで調整した.この際,Gを単独で変化させる のではなく,赤血球膜モデルの全ての弾性定数を同じ 倍率だけ変化させることで,赤血球が両凹円盤形を保 つように配慮した.赤血球の運動は,せん断面内で流 れ方向と赤血球の長軸とがなす角度 φ_{LA} (-0.5 $\pi < \varphi_{LA} \leq 0.5\pi$),および細胞膜上の物質点と 赤血球の重心

Fig. 2 Tumbling and tank-treading motions under shear flow around critical Ca

Fig. 3 Phase diagram of motion transition under shear flow as functions of cell as functions of

and Ca

とを結んだ線とがなす角度

 φ_{Mem} (-0.5 $\pi < \varphi_{\text{Mem}} \le 0.5\pi$)によって定量化した.

シミュレーションの結果, α と**Ca**に応じた T 運動およ び TT 運動が得られた. $\alpha = 0$ の時, 赤血球は TT 運動の みを示し, TT 運動中に S 運動は示さなかった. $\alpha = 1$ の 時, Fig. 2 に示すように, 赤血球は**Ca**が小さい時に T 運

平成 24 年度 RICC 利用報告書

動を、大きい時に TT 運動を、それぞれ示し、運動が遷 移するCa値は0.16であった. この値は、 $G = G_0$ とすると $\mu \dot{y} = 0.14$ Pa に 相 当 し 、 実 験 ⁽⁹⁾ で 得 ら れ る $\mu \dot{y} = 0.015 - 0.075$ Pa (すなわちCa = 0.017 - 0.085) の上限値と比較して 2 倍近く大きい. 遷移時のCa値は、 Fig. 3 に示すように、 α に応じて単調に増加し、上述の Ca = 0.017 - 0.085 で運動が遷移するために必要な条件 は $\alpha = 0.07 - 0.47$ であった. なお、T 運動において、 $\varphi_{LA} - \varphi_{Mem}$ は、Caが大きいほど周期的な増減が顕著と なった. これは、Caが大きいほど T 運動中の赤血球膜の 回転変形が大きいことを反映している. また、TT 運動 では S 運動が伴っており、その振動 (φ_{LA} の振幅) はCaが 大きいほど小さくなった.

4. まとめ

境界要素法を用いて、せん断流中の**T**-**T**T 運動遷移 の力学シミュレーションを行った.その結果、粘性流体 中の赤血球の変形運動は、膜の弾性変形特性によって決 定されることが示された.得られた結果は、近年のシミ ュレーション結果とも良く対応しており、血球の変形運 動問題における粒子法シミュレーションの有用性を示 していると考えられる.

5. 利用研究成果が無かった場合の理由

現時点でフルペーパー1編が投稿中となっており, 次年度での採択を見込んでいる.

6. 今後の計画・展望

弾性変形に応じた赤血球運動を理解するためには, Figs.1および3に示すように,粘弾性定数や自然状態 に対する運動の相図が必要となる.今後は,計算の高 効率化を行いながら,赤血球の釣合形状と変形運動の 力学パラメタ依存性を詳細に調べていく.

7. 参考文献

(1)例えば Evans, E. A. and Skalak, R., Mechanics and Thermodynamics of Membrane, (1980), CRC Press, Florida.

(2)Skalak, R. et al., Biophys. J., Vol. 13 (1973), pp. 245-264.

(3)Tsubota, K. and Wada, S., Int. J. Mech. Sci., Vol. 52 (2010), pp. 356-364.

(4)和田成生・小林亮, 機論 A, Vol. 69 (2003), pp.14-21.

(5)Helfrich, W., Z Naturforsch C Vol. 28 (1973), pp. 693-703

(6)Boal, D. H. and Rao, M., Phys. Rev. A, Vol. 46

(1992), pp. 3037-3045

(7)Zarda, P. R. et al., J. Biomech., Vol. 10 (1977), pp. 211-221.

(8)Lim, H. W. G., et al., Proc. Natl. Acad. Sci. U S A, Vol. 99 (2002), pp. 16766-16769.

(9)Abkarian, M., et al., Phys. Rev. Lett., Vol. 98 (2007), 188302.

(10)Pozrikidis, C. J. Fluid Mech., Vol. 440 (2001), pp.269-291.