1. Background and purpose of the project, relationship of the project with other projects

Solid hydrogen was predicted to become metallic under very strong compression and will probably become an high-temperature superconductor. However, hydrogen remains insulating up to extremely high pressures, at least up to 342 GPa, at both low- and room- temperatures. It is assumed that metalization is more accessible for hydrogen-rich compounds, since hydrogen can be "pre-compressed" by the heavier elements. Indeed, subsequent experiments showed that AlH₃ transforms to a metal-hydrogen alloy at a pressure in excess of 100 GPa, which was significantly lower than that required to metalize pure hydrogen itself. Recently, extended M-H (M=Li, Na, K, Rb and Cs) systems have received much attention. Several hydrogen-rich compounds, for instance LiH₆, NaH₉ and CsH₃, were proposed to form at moderate pressures. Moreover, our theoretical studies on Ca-H system suggested that stoichiometric CaH₆ with hydrogen that forms sodalite cages containing enclathrated Ca stabilizes at 150 GPa and possesses a strong electron-phonon coupling with an estimated superconducting temperature in the order of 200 K.

The current research project aims to explore the high pressure crystal structures on hydrogen rich hydrides of MHₙ, (M=Be, Mg, and Ba, n≥2) through our CALYPSO (Crystal structure Analysis by Particle Swarm Optimization) method on crystal structure prediction, thus zero temperature high pressure phase diagram can be established. We then wish to perform extensive electron-phonon coupling calculations using the predicted high pressure metallic structures within the linear response theory to understand if these compounds can be superconducting at high pressures.

The ultimate goal of the current research is then targeting to reveal the possibility of high temperature superconductivity on these hydrides under ultra-high pressure and to understand the exciting chemistry of hydrogen and the role played on the superconductivity, guiding the future experimental exploration on high temperature superconductivity at high pressures. We expect the current research project could establish important underlying physics on the superconductivity of hydrogen-rich compounds and also lead us high standard publications in top journals, such as Physical Review Letters or PNAS.

2. Specific usage status of the system and calculation method

During the fiscal year 2012, We have used all of the total allocated CPU time of CPU hours for above calculations.

Ab initio crystal structure prediction has been performed through our newly developed particle swarm optimization technique, which has been implemented in our CALYPSO code. This method is able to search for the structure possessing the lowest free energy at given Pressure-Temperature conditions and is capable of predicting the stable structure of a given compound for a given composition. The structural relaxations were performed with the VASP code. We use plane wave basis sets for the expansion of the electronic wave function, a pseudopotential description of the electron-ion interactions and density function theory
RICC Usage Report for Fiscal Year 2012

(DFT) for the electron-electron interactions through Quantum-ESPRESSO packages. It can calculate the ground-state energy and Kohn-Sham orbitals for both insulators and metal, in any crystal structure, for different exchange-correlation functions. The calculation of the phonon dispersion curves is performed within the direct supercell method via Phonopy package or the linear response theory based on the DFT via Quantum-ESPRESSO.

3. Results

We have explored the structures of BeH$_{2n}$, MgH$_{2n}$, BaH$_{2n}$, and SrH$_{2n}$ ($n = 1–6$) hydrides. For each stoichiometry, calculations were performed at pressures 50–300 GPa with up to four formula units in the model. The enthalpies of candidate structures relative to the products of dissociation into MH_2 + solid H$_2$ at the appropriate pressures are calculated. Fig. 1 summarized the most interesting results on SrH$_{2n}$. The essential information can be summarized as follows: (i) stable structures began to emerge at pressures < 50 GPa; (ii) SrH$_4$ was the most stable phase at pressures between 50, while at 100 GPa SrH$_6$ had the lowest enthalpy of formation; (iii) the breakup of hydrogen molecules depended on the Sr/H ratio, and a higher susceptibility to dissociation was observed at higher ratios. Notably, calcium hydrides with stoichiometry having odd number of hydrogen (e.g. SrH$_3$, SrH$_5$, and SrH$_7$, etc) were found to be energetically very unfavourable and were excluded in the discussions.

Figure 1 | Enthalpies of formation (ΔH, with respect to SrH$_2$ and H$_2$) of SrH$_{2n}$ ($n=2–6$) and crystal structures. The abscissa x is the fraction of H$_2$ in the structures. The stable pressure ranges for SrH$_4$ and SrH$_6$ are 50 GPa and 100–200 GPa, respectively.

At 50 GPa, SrH$_4$ adopts the cI10-CaH$_4$ structure, in which hydrogen forms monatomic H + H$_2$. The band structure calculation reveals that SrH$_4$ is an insulator. At 100 GPa, the P-6 structure becomes energetically most stable, and SrH$_6$ becomes the most stable stoichiometry of SrH$_{2n}$ ($n=1–6$). Three hexagonal phases of SrH$_6$ having P-6, P321 and R-3m structures were predicted to be stable at pressures of 100 to 300 GPa. As shown in Fig. 2, Sr adopts the same atomic sites in all three structures and H locates in the interstitial region. Three types of hydrogen species, monatomic H + H$_2$, “H$_3”$ units and trispiral H chain, were observed. The P-3 structure has a primitive hexagonal structure including 6H$_2$ + 6H. The next stable phase has a P321 structure, which can be seen as an intermediate phase on the way of hydrogen transforms from monatomic H + H$_2$ to trispiral H chain in the R-3m structure.
Recently, several novel hydrogen species, e.g. “H+H₂”, “H₃” and “H₄” units, have been predicted in hydrogen-rich materials, e.g. Li-H, Cs-H, and Ca-H systems, which have been shown to bring several intriguing properties in hydrides at high pressures, such as, dynamical Jahn-Tellor effect, phonon anomalous, and strong electron-phonon coupling. Therefore, the electronic, phonon and electron-phonon coupling properties of the novel trispiral H chains in SrH₆ is very interesting.

The electronic properties of the three hexagonal phases of SrH₆ were systematically investigated by density of state (DOS), band structure, electron localization function and Bader charge analysis calculations. As shown in Fig. 3, the metallization of SrH₆ by band gap closure has been found at 150 GPa in P-3 structure. The partial DOS of hydrogen at the Fermi level increases from ~0 to ~0.1 electrons per SrH₆ as the pressure increases from 150 to 200 GPa and remain constant to 300 GPa, which are comparable to that of cI14 CaH₆ at 150 GPa, indicating the P321 structure a potential high-temperature superconductor.

In the phonon calculations, we found several imaginary frequencies for all the three, P-3, P321 and R-3m structures of SrH₆ outside the energetically stable range of pressures. One soft mode of P-3 structure was found in Γ-H direction at 200 GPa, and a detailed analysis of the vibration eigenvector of this soft mode reveals that the P-3 -> P321 is a displacive phase transition of second order. Besides, we found that the P321 structure transform to the R-3m structure during the structure optimization at pressures in range of 250 to 300 GPa, and one soft mode in L-T direction was also found for R-3m structure at 250 GPa, which indicate P321 -> R-3m is also a displacive phase transition.

The predicted stable structures for BeH₂ were carefully optimized at a higher level of accuracy at pressure range from 0 to 300 GPa for enthalpy curve calculations. Our simulations revealed a sequence of new structures under pressure. Among them, a simple hexagonal P-3m1 structure shows the lowest enthalpy at 50 GPa as depicted in Fig. 4(b) (1 f.u./cell), It presents an obvious layered structure with six-fold H-Be-H sandwiches stacking order seeing in the polyhedral views (3 formula units/unit cell, f.u./cell). The tilt BeH₆ octahedrons connected to each other vertically to form a layer with an average 1.42 Å of Be-H distance. With increasing pressure, a similar hexagonal R-3m structure has taken place at 141 GPa, which is built up by the similar sandwich-like layers with different stacking sequences (ABC-ABC). This pressure induced phase transition caused a slight distortion on the position of the center Be atoms along the [100] crystallographic direction. The nearest H-H distance in R-3m is 1.43 Å at 150 GPa, which is much longer than the H-H bonding length of ~1.2 Å and decreases very slowly with increasing pressure and become 1.39 Å at 300 GPa, showing that H atoms do not present any bonding trend. In the contrast of these two six-coordinated BeH₂, the experimental phase
α·BeH₂ is a structure consists of corner sharing BeH₄ tetrahedra unit. Interestingly, when it is further squeezed to the pressure of 202 GPa, a three dimensional framework of orthorhombic structure with Be centered in an eight-fold structure formed by BeH₈ hendecahedrons consisting of two-face capped trigonal prisms was predicted (4 formula units/unit cell, f.u./cell).

![Image](image_url)

Fig. 4 The predicted P3m1 (b), R-3m (c), and Cmcm (d) structures.

The calculated enthalpy curves (relative to α·BeH₂) for various structures at zero temperature (presented in Fig. 5) confirm the energetic stability of our predicted structures. It is clearly seen that our P-3m1 phase exhibits a more preferred thermodynamic stability than that of the previously predicted β·BeH₂ structure, which is never stable in all pressures studied. And this P-3m1 structure is stable up to 141 GPa, above which the R-3m structure becomes favorable and stable in the pressure range of 141 – 202 GPa. At higher pressures (> 202 GPa), the Cmcm phase becomes the most stable structure. Not that, at 0 K, Gibbs free energy (G) reduces to enthalpy + zero-point energy (ZPE). Beryllium and hydrogen have very light atomic mass, and thus its ZPE may be large enough to affect the structural stabilities. To investigate the ZPE effects of BeH₂, we have thus calculated Gs of P-3m1, R-3m and Cmcm structures at 100-250 GPa using quasi-harmonic approximate; see inset of Fig. 5. It turns out that inclusion of ZPE lowers the stabilization pressures of R-3m and Cmcm structures, while the existence of our newly predicted structures remains unchanged.

![Image](image_url)

Fig. 5 Calculated enthalpies (relative to α·BeH₂) of various structures as function of pressure in BeH₂. Inset shows calculated Gibbs free energies for the P-3m1 and R-3m structures with the zero-point corrections.

4. Conclusion

The phase diagram of BeH₂n, MgH₂n, BaH₂n, and SrH₂n (n = 1 – 6) hydrides at zero temperature were established. Especially, we found that the results for SrH₂n and BeHn (n=1-6) at 0 K are quite interesting, worthy of publication in high profile journals. We found the most stable stoichiometry for Sr hydrides are SrH₄ and SrH₆ at pressure of 50 GPa and above 100 GPa, respectively. An unexpected hydrogen species of trispiral H chain has been predicted in the R-3m structure of SrH₆ at pressure of 300 GPa. Electronic structure calculations suggest that the P321 and R-3m structures of SrH₆ are potential high-temperature superconductors at pressures above 200 GPa. Besides, we found that both P-3 > P321 and P321 -> R-3m are displacive phase transitions of the second order.

Three new phases were found for BeH₂ under high pressure. P-3m1 structure is found to be stable up to ~130 GPa, at which pressure we predict a phase transition into another insulating structure with R-3m symmetry. Further increasing pressure, above ~200 GPa, this R-3m phase undergoes a structural transition from a semiconductor phase to a metallic phase with symmetry Cmcm. Moreover, the estimated Tc of BeH₂ reach 45 K at 300 GPa by
application of the Allen-Dynes modified McMillan equation.

5. Schedule and prospect for the future

We have been a RICC general user and wish to continue using the system. During the fiscal year 2012, we have performed systemically structure predictions, electronic band structures, phonons, electron-phonon calculations on BeH$_{2n}$, MgH$_{2n}$, BaH$_{2n}$, and SrH$_{2n}$ (n = 1 – 6) hydrides. But only part of the planned calculations on BaH$_{2n}$ has been finished. For example, most of structural predictions on BaH$_{2n}$ (n= 1–6) were done. But the calculations on electronic band structures, electron localization function, electron-phonon couplings were not completely finished yet. For the next fiscal year 2013, we plan to continue using RICC supercomputer to perform the rest of calculations on BaH$_{2n}$, then we will extend our research on the crystal structure prediction of other systems through CALYPSO code, and build the zero pressure phase diagram. We expect high standard publications can be eventually achieved.
Fiscal Year 2012 List of Publications Resulting from the Use of RICC

[Publication]

 http://dx.doi.org/10.1073/pnas.1118168109

