課題名 (タイトル):

野球変化球の解析

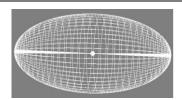
利用者氏名:内薗 謙介 所属:情報基盤センター

1. 本課題の研究の背景、目的、関係するプロジェクトとの関係

飛翔する球体に働く空気力に関する研究にお いては、「ドラッグクライシス」と「負のマグナ ス効果」への関心が高い。ドラッグクライシスが 発生する Re 数を臨界 Re 数と呼ぶが、急に回転や 粗度を与えた場合には臨界 Re 数が低減すること が知られている。一方、負のマグナス効果とは、 通常バックスピンする球体に鉛直上向きに働く 揚力が、ある条件下においては鉛直下向きに働く 現象である。このドラッグクライシスと負のマグ ナス効果については、共に球表面における乱流遷 移に起因する現象であり、両者の間には関連性が あり、真球に働く揚力が正から負へと変わる Re 数において球周りの境界層が乱流遷移して抗力 が減少する。これら臨界 Re 数付近での球体に働 く空気力に関する研究は、風洞実験、水槽実験や 飛翔実験によるものが多い。最近になって、LES による計算結果も報告されたが、サブスケールで の乱流モデルの影響がないとは言い難い。

そこで、乱流モデルを使用しない直接数値計算 により、球に働く空力特性を調べた。

2. 具体的な利用内容、計算方法


基礎方程式は、連続の式(1)と非圧縮性ナビエ・ストークス方程式(2)である。

$$\operatorname{div} \boldsymbol{v} = 0 \tag{1}$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \text{grad})\mathbf{v} = -\text{grad}p + \frac{1}{Re}\Delta\mathbf{v}$$
(2)

この方程式をMAC法により解析し、差分法により数値的に解いた。差分法による離散化では、時間積分に一次精度の陽的オイラー法を用い、空間微分項は三次精度の風上差分を用いた。

計算格子は、2次元の0型格子をx軸に対して 回転させるようにして生成した3次元の格子を 利用した。図1に計算格子を示す。

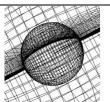


図1:計算領域(左)と球表面(右)

3. 結果

無回転状態における、抗力係数 C_D の Re 数関係図を図2に示す。

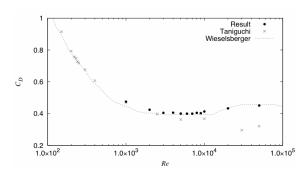


図2: C_p の Re 数関係図

図 2 より、これまで解像度不足により C_p が異常値を示していた $Re = 0.5 \times 10^5$ においても Wieselsberger による風洞実験結果と同様の結果となり、本数値計算の妥当性が伺える。また、 $Re = 0.1 \times 10^5$ 、 0.2×10^5 における無回転状態での C_p は、それぞれ 0.413、0.433 となり、卓球ボールによる飛翔実験結果とほぼ同じ結果を得た。

次に、 $Re=0.1\times10^5$ における無回転状態とライフル回転を与えた場合の C_D 及び球表面上での圧力をそれぞれ図3、4に示す。同様に、 $Re=0.2\times10^5$ における無回転状態とライフル回転を与えた場合の抗力係数 C_D 及び球表面上での圧力をそれぞれ図5、6に示す。

平成 24 年度 RICC 利用報告書

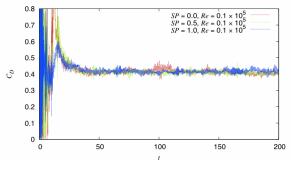


図3: $Re=0.1\times10^5$ における C_p

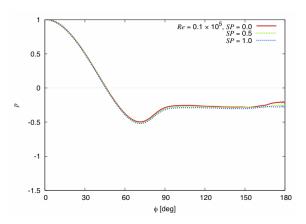


図4: Re=0.1×10⁵ における球表面上での圧力

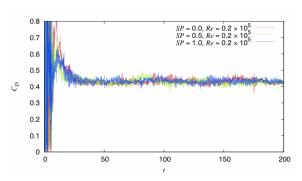


図 5: $Re=0.2\times10^5$ における C_p

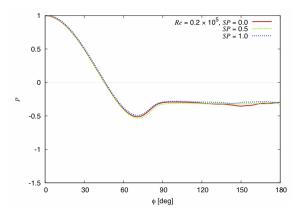


図6: Re=0.2×10⁵ における球表面上での圧力

ライフル回転を与えた場合の C_D は、 $Re=0.1 \times 10^5$ 、SP=0.5、1.0 において、それぞれ 0.410、0.417 であった。また、 $Re=0.2 \times 10^5$ 、SP=0.5、1. において、それぞれ 0.425、0.432 であった。図 $3 \sim 6$ より、 $Re=0.1 \times 10^5$ 、 0.2×10^5 においては、無回転状態とライフル回転を与えた場合では、 C_D 及び球表面上での圧力に明確な違いは見られなかった。

4. まとめ

 $Re=0.1\times10^5$ 、 0.2×10^5 において、無回転状態での C_0 は、飛翔実験結果と同様の結果を得た。

 $Re=0.1\times10^5$ 、 0.2×10^5 において、球にライフル回転を与えた場合、 C_p 及び球表面上での圧力に明確な違いは見られなかった。

5. 今後の計画・展望

通常、球に回転を与えた場合には、 C_p が大きくなるが、 $Re=0.1\times10^5$ 、 0.2×10^5 においてそれを観察することはできなかった。従って、より高いRe数において同様の数値計算を行い、回転による影響を調べる。