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#8881 : Solvation in cellular environments: How does

the interaction with aqueous solvent change in

(Feig « JFH)
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crowded environments?

Macromolecular crowding has been shown to alter
biomolecular structure and dynamics compared to
dilute environments. Past studies of crowding have
focused largely on volume exclusion by crowder
molecules with the main conclusion that such
crowding effects lead to more compact states. Most
discussions of crowding so far have focused on the
interactions, while

nature of protein-crowder

relatively little is known about the effect of crowding
on the structure and dynamics of water. However,
the effects of crowding on water properties are a key
part in developing a full understanding of the
behavior of biomolecules in cellular environments. In
order to obtain a better understanding of water in
crowded biological environments, we performed a
series of fully-atomistic molecular dynamics
simulations of highly concentrated protein solutions

to mimic biological crowding environments.

2. BARBYZRRIHINGS . BHE DT

To mimic crowded protein environments, two types
of systems were set up. The first system consisted of
eight protein G molecules; the second system
consisted of four protein G molecules and eight villin
headpiece sub-domains. All three systems were
solvated in explicit solvent under periodic boundary
conditions. Furthermore, to examine the effect of
different box sizes

concentration, five were

considered for each system. The protein
concentrations range from 144 g/L to 619 g/L for the
mixed protein G/villin system corresponding to
protein crowder volume fractions between 10 and
43%. All the systems were then solvated with explicit
TIP3P water molecules in cubic boxes. The initial
systems were minimized and subsequently heated to
298 K. Production simulations were then continued
in the NPT ensemble at a temperature of 298 K and
a pressure of 1 bar. All simulations were performed

using the molecular dynamics simulation package

NAMD version 2.7b2. The CHARMM 27 all-atom
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force field was used in combination with the CMAP
correction term. Each simulation was carried out for

300 ns.
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Figure 1: Simulated systems after 100 ns. Protein G
is shown in brown and villin headpiece subdomain in

green.

3. FER

Available volume as a function of distance from
the closest solute heavy atom was calculated to
determine what fraction of water molecules is far
enough from any solute to retain bulk properties. In
the most crowded cases, the available volume
reduces to zero at 10 A with 30%vol protein G
crowders and at 8 A with 43%vol protein G/villin
crowders. For crowder volume fractions of 30% and
more, the bulk volume is reduced to below 10% while
most of the available volume is found within the first
solvation shell (< 4 A) from the protein. This means
that in the most crowded cases there is theoretically
almost no room for bulk water and overall hydration
properties are therefore expected to be altered
significantly.

Radial distribution functions were calculated for
the distances between water oxygen atoms and the
nearest heavy atom of any of the protein crowder
molecules. The radial distribution functions are
normalized by bulk water density and the
theoretically accessible volumes described above. It
can be seen that the first solvation peak remains
largely unaffected even under highly crowded

conditions. The second solvation peak is also present

in all cases but for highly crowded systems with

volume fractions of 30% and above the water density
is reduced significantly relative to bulk densities
with increasing distance from the solute. The
reduction in bulk density is presumed to be a result
of an increasing number of small solvent cavities at
highly crowded conditions that are too small to
accommodate water molecules. Interestingly this
effect is negligible for less than 30%vol but rapidly
dominates for crowder fractions of more than 30%vol.
Diffusion coefficients were calculated from
mean-square displacements of water oxygen atoms.
Dielectric constants were calculated for water only in
each of the simulations from the overall water box
dipole fluctuations. Diffusion rates and dielectric
constants are significantly reduced as a function of
crowding shown in the following figures. The
reduced dielectric constant has implications for the
stability of biomolecules in crowded environments
and suggests a prescription for modeling solvation in

simulations of cellular environments.
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Figure 2: The linear relationships of diffusion
coefficent and dielectric constant with respec to

protein volume fraction.

4. £L0

In this study, we investigated physical properties
of water in the presence of protein crowders at
different concentrations. We find that under highly
crowded conditions, hydration properties change
significantly from bulk solvent. Both, hydration
structure and dynamics are altered as a function of
crowding. The most dramatic change is a significant
decrease in self-diffusion and dielectric response.

The reduced diffusion rates are expected to affect

hydrodynamic properties in cellular environments



gk 23 42 RICC IR 5

while a reduced dielectric response alters the

thermodynamics of folded proteins.

5. 5% OFH - RE

While the focus of this study has been solely on the
structure and dynamics of water, future studies will
investigate the effect of altered hydration properties
on biomolecular solutes in more detail. The results
from this work suggest a prescription for developing
mean-field models of solvation in cellular
environments, for example by developing implicit
descriptions of cellular environments using the
reduced dielectric response reported here. It is our
hope that such models will facilitate physically

realistic studies of biomolecular dynamics on cellular

scales.
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: Development of parallelization for
Molecular dynamics ( Jung )

1. Background and purpose of the project,
relationship of the project with other projects
My past research was to develop new QM/MM
methods for biomolecules and to introduce
parallelization in QM/MM. Current purpose is the
development of the efficient parallelization scheme
for  molecular  dynamics  program  spatial
decomposition scheme and the understanding of
enzyme reaction using QM/MM.
2. Specific usage status of the system and
calculation method
Our scheme of parallelization of MD uses the
so-called midpoint method in which two particles
interact on a particular box if and only if the
midpoint of the segment connecting them falls
within the region of space associated with that box.
We also use a modified constrained optimization
with QM/MM where both Hartree Fock and MP2 are

available as QM.

3. Result

With the newly developed path optimization
method, we investigated the phosphorylation
reaction by cAMP-dependent protein kinase (PKA).
We found that the transition state is formed before
the movement of proton. We confirmed our method
by the accurate energy barrier compared with the
experimental result. As for the parallelization of the
molecular dynamics, we confirmed the parallel
efficiency using RICC clusters. The CPU speed result

of seca proteins with cutoff is as following figure:
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4. Conclusion

With the recently developed method (QM/MM with
the modified constrained optimization), we
investigated the phosphorylation reaction by PKA.
We also developed parallelization using spatial

decomposition scheme on molecular dynamics.

5. Schedule and prospect for the future
Currently, we finish the development of the new
domain decomposition with short range. This year,
we’ll include long range interaction in our method
with better parallel efficiency. In addition, we’ll
investigate many conformational changes of proteins
with our existed program. We also finish the reaction

path optimization with QM/MM and we’ll find out

the main enzyme function related with
phosphorylation reaction.
6. If you wish to extend your account, provide

usage situation (how far you have achieved,
what calculation you have completed and what
is yet to be done) and what you will do
specifically in the next usage term.

I finished the enzyme reaction calculation of PKA
at the Hartree Fock level and finished the
implementation of parallelization with cutoff. The
QM/MM calculation at the MP2 level and parallel

implementation with the long range interactions are

remained.

7. If you have a “General User” account and could
not complete your allocated computation time,

specify the reason.

I expected that I could complete the allocated
computation time if I continue the computation
every day. However, in many times, I should wait for
long time until other group finish the calculation and

I should have used other resources for those times.

8. If no research achievement was made, specify
the reason.

Research achievement was made enough.
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