Project Title:

Nucleon Structure from Lattice QCD with Domain Wall Fermions

Name	: Meifeng Lin(5)(1), Tom Blum(2)(1), Taku Izubuchi(4)(1), Chulwoo Jung(4)(1),
	Shigemi Ohta(6)(7)(1), Shoichi Sasaki(8)(1), Takeshi Yamazaki(9)(1)
Affiliat	ion : Theory Group RIKEN BNL Research Center
	Sub Nuclear System Research Division
	Nishina Center for Accelerator-Based Science, Wako Institute
Upt	con, New York, USA
(1)	Department of Physics, University of Connecticut, Storrs, Connecticut, USA
(2)	Department of Physics, University of Virginia, Charlottesville, Virginia, USA
(3)	Physics Department, Brookhaven National Laboratory, Upton, New York, USA
(4)	Department of Physics, Yale University, New Haven, Connecticut, USA
(5)	Institute of Particle and Nuclear Studies, KEK, Tsukuba, Japan
(6)	Department of Particle and Nuclear Physics, Sokendai Graduate University of Advanced
	Studies, Hayama, Kanagawa, Japan
(7)	Department of Physics, University of Tokyo, Tokyo, Japan
(8)	Center for Theoretical Studies, Nagoya University, Japan

1 . Introduction

1.1 Scientific Background

Protons and neutrons (collectively called nucleons) compose the major part of atoms, and are fundamental building blocks of the visible matter. Understanding their internal structure advances our fundamental knowledge about the composition of the universe, and is a top-priority topic of the US Department of Energy (DOE) nuclear physics long-range plan. Many particle and nuclear experiments worldwide are actively probing the charge, current, magnetization and other fundamental properties of protons and neutrons, such as Mainz in Germany and the Jefferson Lab in the US. In particular, the RIKEN-sponsored RHIC-Spin experiment at Brookhaven National Laboratory in the US probes the spin structure of the nucleon, and one of the main motivations of our project is to be able to compare the theoretical predictions from lattice QCD calculations with the RHIC experiments. From a theorist's point of view, being able to interpret the observed experimental data and predict new properties of the nucleons from first-principles theories enhances our fundamental understanding of the underlying interactions and is the ultimate goal of our proposed research topic.

The theory that describes the interactions inside a proton is the so-called Standard Model of particle physics. In particular, we are interested in the component of the Standard Model known as Quantum Chromodynamics (QCD). In this theory, a proton consists of quarks which are fermions with fractional charges, and gluons which mediate the strong interactions among quarks. Because of the nature of the strong interactions, traditional perturbative theoretical calculations (which assume that fermions receive only small corrections to their behavior from the force carrying bosons) fail to work. In the 1970s Kenneth Wilson (later to win the Nobel Prize for his work on the Renormalization Group and Critical Phenomena) formulated Lattice QCD. This did two things: firstly, it provided a rigorous definition of the meaning of QCD beyond perturbation theory, and secondly it provided a way to perform first-principles calculations numerically. While it has taken several decades of improvements in computing power and algorithmic developments, recently the latter has been very successful in reproducing observed experimental data, such as the particle spectrum and decay properties. In lattice

QCD calculations, the four-dimensional space-time is discretized into a box with discrete grid points, and Monte Carlo simulations based on the Standard Model are carried out on computers. Since lattice QCD simulations are carried out in a finite box, at finite quark masses and at a finite lattice spacing, before we can reliably interpret our results, we need to have the associated systematic errors under control.

The two most prominent systematic errors may be the errors associate with the finite volume and finite quark masses in the lattice calculations. In order to relate the results from lattice simulations to the real world, extrapolations are required to obtain results at the physical point which can then be compared to known experimental values or as predictions for future experiments. Chiral perturbation theory (ChPT), a low-energy effective theory, is often used to guide the extrapolation. However, at the order practical for our calculation, chiral perturbation theory is only applicable at small quark masses (or equivalently, small pion masses). Existing lattice calculations of nucleon structure with chiral fermions have pion masses only as low as 300 MeV (while the physical pion mass is about 140 MeV), which are at the edge of the applicability of chiral perturbation theory of the appropriate order [1,2,3,10]. It has been found that lattice results at these pion masses are not consistent with the predictions of chiral perturbation theory, and the extrapolated values using ChPT deviate from the experimental values, indicating the systematic errors from chiral extrapolations are large [3,4,6,10,12]. Doing lattice calculations at lighter pion masses will greatly reduce the uncertainty associated with the chiral extrapolation and has the potential of producing high-precision results valuable to both the theory and experiment communities.

wavelength gets larger, and the size of the lattice volume needs to be larger to accommodate the pions. On the other hand, as the pion mass gets lighter and the volume gets larger, the numerical cost of the lattice calculations increases dramatically. Due to the complexity, and expense, of such calculations, there are naturally large research collaborations to facilitate the research efforts.

The RIKEN-BNL-Columbia (RBC) collaboration started around the same time as the RIKEN-BNL Research Center (RBRC) was founded in 1997. RIKEN and Columbia jointly built the 600-GFlops QCDSP (Quantum Chromodynamics on Digital Signal Processors) computer dedicated for lattice-QCD numerical research at RBRC. The RBC also pioneered the use of a particular formulation of lattice QCD known as Domain Wall Fermions (DWF)[14]. Traditional lattice formulations break many of the symmetries of the continuum theory. Perhaps the most important of these is chiral symmetry which says that left-handed and right-handed quarks are only coupled due to the small mass terms of the quarks. Naive lattice QCD formulations lead to couplings which are orders of magnitude too large. In DWF an additional fifth dimension is introduced to the space-time, with the left- and right-handed fermions living on opposite four-dimensional boundaries of the five-dimensional space, which greatly improves chiral symmetry. This formulation revolutionized the way numerical lattice QCD research is conducted. An important outcome was that the so-called non-perturbative renormalization method became practical, and made possible, for the first time in history, accurate calculations of quantum transitions between hadronic states.

1.2 Purpose of the Project

The purpose of this proposal is to calculate the structure of nucleons using lattice QCD techniques. The primary focus of this research is to calculate all

As the pion mass gets lighter, the pion Compton

the isovector vector and axial-vector form factors and some low moments of isovector structure functions of nucleon using a new set of lattice QCD numerical ensembles at larger than ever spatial volume of about 4.5 fm across and pion masses as low as¹ 170 MeV [13, 21]. An exploratory study of the nucleon strangeness content will also be pursued. We also propose to use a small fraction of the time for algorithmic developments. Detailed descriptions of each topic are given below.

(1) Precision lattice determination of nucleon mass. Being able to reproduce the experimentally well-known nucleon mass from the first-principles lattice calculations is a great step in establishing the precision test of lattice QCD. Previously, the heavy pion masses in the calculations make it hard to perform chiral extrapolations. With nearly physical pion mass in our calculations, we will be able to obtain a nucleon mass which is free of large systematic errors coming from chiral extrapolations. We will also be able to investigate the validity of chiral perturbation theory in these small pion mass ranges. Such calculations will be a great milestone towards high-precision lattice calculations.

(2) Nucleon vector form factors. Nucleon isovector vector form factors are part of the electromagnetic form factors and thus studied mainly by elastic electromagnetic processes such as electron scattering off nucleons or nuclei. They provide information of such important properties as mean-squared charge radii or anomalous magnetic moments which determine electromagnetic interactions of nuclei with other electromagnetic entities such as photon and electron. Thus these form factors ultimately determine electromagnetic properties of atoms which

¹ We note that the pion mass for the light ensemble was previously determined to be 180 MeV. New improved measurements gave a result of 170 MeV. Thus in this report, we refer this ensemble as 170 MeV ensemble. in turn govern properties of chemistry and biology.

Because the quark masses in lattice calculations are heavier than reality extrapolations that utilize the formula given by chiral perturbation theory are needed. In order to be able to reliably apply the chiral formula, the quark masses in the simulations need to be small enough. Existing lattice calculations have pion masses usually larger than 300 MeV, while a physical pion mass is about 140 MeV, which requires a long extrapolation from the simulated data to the physical point. Performing lattice calculations on the new DWF ensembles at pion masses of 250 MeV and 170 MeV will significantly reduce the systematic errors coming from chiral extrapolations. In addition, the large volume of the new ensembles will make the calculations less susceptible to finite volume effects and have the potential of achieving unprecedented statistical and systematic precisions.

Figure 1: Nucleon isovector charge radii from previous lattice calculations. The green star is the experimental point, and the blue curve is prediction from chiral perturbation theory.

Given in Fig.1 are the results from previous lattice calculations for the nucleon isovector Dirac radii as a function of the pion mass squared, where the lattice results are systematically lower than the experimental point and are not consistent with the prediction from chiral perturbation theory. A naive linear extrapolation to the lattice data gives a value at the physical point which is much smaller than expected. Having lattice results at lower pion masses will undoubtedly improve our ability to perform a more reliable chiral extrapolation.

(3) Nucleon axial form factors. Nucleon axial and induced pseudoscalar form factors probe the weak structure of the nucleon, and are also actively pursued experimentally, for example by using muon instead of electron: muon capture process is sensitive to a part of these form factors, gp, for example.

The nucleon axial charge g_A is defined as the zero momentum-transfer limit of the axial form factor, and determines the neutron lifetime. It is indeed best measured in neutron beta decay, in which a neutron decays into a proton via weak interaction and emits an electron and anti-neutrino. It also controls the interaction of pion and nucleon through the Goldberger-Treiman relation. Thus it is the most important nucleon property single in determining the abundance of elements that are formed in premordial and stellar nucleosynthesis. In contrast to the corresponding vector charge, gv, which is not affected by the strong interaction, it receives corrections from the strong interaction and deviates from unity in units of g_V , $g_A = 1.2701(25) g_V$. We recently discovered this strong correction is strongly dependent on the pion mass and the volume in which the lattice calculation is conducted. This is shown in Fig. 2, where lattice results from different lattice volumes and different lattice formulations depend not only on the pion masses, but also the volumes. Our current calculations will continue to explore the dependence of g_A on the pion mass and the lattice volume, and allow us to perform a more reliable extrapolation to obtain a physical value for **g**A.

Figure 2: $m_{\pi}L$ -scaling for g_A , which indicates finite volume effects.

(4) Nucleon structure functions. Studied mainly by lepton deep inelastic scattering and Drell-Yan experiments off nucleon and nuclei, these reveal deeper structures of nucleon and led to discovery of quarks and QCD. RIKEN experimenters are trying to resolve a puzzle in spin-dependent structure functions of nucleon through the RHIC-Spin experiments now conducted at RIKEN-BNL Research Center. Of particular interest are the quark momentum fraction, helicity fraction, and tensor charge, all in isovector combinations.

For the first two quantities conventional lattice-QCD numerical calculations significantly over estimate the experimental values. A recent joint study by RBC and UKQCD collaborations found that at the lightest quark mass value that corresponds to 330 MeV pion mass these values trend down to the experiment. By comparing the two different volumes, it is suggested the finite-size effects in these quantities seem absent, in contrast to the situation for the axial form factors discussed in the above. It is thus interesting to see if the trend toward experiment and apparent absence of the finite-size effect hold at the lighter quark masses that correspond to 250 MeV and 170 MeV pions.

For tensor charge the same joint RBC/UKQCD study have a crude prediction. As this quantity will soon be experimentally measured, it is obviously important to refine this prediction at lighter quark mass values.

(5) Strangeness content of the nucleon. There has been much interest in a more accurate evaluation of scalar matrix elements of nucleons, in particular due to its connection to the coupling of nucleons to MSSM (Minimal Supersymmetric Standard Model) dark matter candidates via Higgs boson. However, lattice calculation of this quantity has been a challenge, due to the fact that the traditional method of calculating such quantities involves evaluation of what is known as disconnected diagrams, which are intrinsically noisy and so, when using standard techniques, require a large number of measurements. Recent studies with a formulation of lattice QCD known as Overlap fermions suggest the preservation of chiral symmetry is crucial in controlling systematic errors, suggesting a DWF calculation would be advantageous.

Recently there have been lattice studies using Feynman-Hellman theorem, which showed promise in calculating the scalar matrix element without expensive evaluation of disconnected diagrams, but rather via a calculation of the derivative of much less expensive observables with respect to the strange quark mass. Here we propose to evaluate the nucleon scalar matrix element by taking such a numerical derivative of the nucleon mass via what is known as a reweighting; a technique we have recently successfully applied to modifying the of our strange quark mass lattice gauge configurations [20].

problems to address using lattice techniques is constrained by the algorithms available to both generate the lattice gauge field configurations, and calculate quantities using them. While the increase in available computer power over the past few years has played a vital role in making Lattice QCD a realistic tool for studying QCD, algorithmic improvements have played a role at least as important, and we propose to use a small portion of the computer time covered by this proposal to continue such developments.

2. Computational Details and Usage Status2.1 Computational Methods

We perform our calculations with domain wall fermions on the existing gauge backgrounds generated by the RBC and UKQCD collaborations. These gauge backgrounds encode a particular configuration of the gluon fields. For each such configuration we need to calculate the sum of all possible paths a quark can take between a given set of starting positions (sources) and all points on the lattice. While other calculations will be involved, this will be the dominant calculation in terms of computer time. The natural unit in which to measure such things is a single starting position. A single starting position leads to the calculation of a single quark propagator. To make the best use of the available gauge backgrounds, we plan to calculate quark propagators at four independent starting positions. From each propagator four so-called sequential propagators will be needed to perform the proposed calculations. The sequential propagators will then multiply the forward propagator from the source with appropriate operators and momentum of interest. Thus on each gauge background, 20 propagators are needed.

Once the forward propagators and the sequential propagators are calculated, we construct two and three-point functions of the nucleon. The two-point

nucleon correlation functions are traces of the products of the forward propagators, and the three-point functions are traces of the products of the forward propagators and sequential propagators. A graphical representation of the so-called connected diagram of the three-point function is shown in Fig.3.

Figure 3: An illustration of the connected contribution to the nucleon three-point functions. t and t' are the locations of the nucleon source and sink, respectively. τ is the location of the operator of interest.

In addition to the connected contribution, another type of diagram also exists except in the isovector limit. This type of diagram is shown in Fig. 4, and is called the disconnected diagram. We are not considering this in most of our calculations, and only investigate it in our algorithmic development phase.

Figure 4: An illustration of the disconnected contribution to the nucleon three-point functions. t and t' are the locations of the nucleon source and sink, respectively. τ is the location of the operator of interest.

Since we perform Monte Carlo simulations, we will need to do the calculations on multiple gauge backgrounds so that statistical averages and errors can be calculated. We perform the calculations on the gauge backgrounds separated by 8 time units to reduce the autocorrelations between measurements. On each gauge background, we will also use 4 different source locations separated by 16 lattice sites in the time direction to take advantage of the large size of the lattice².

Since we are interested in the properties of the nucleon ground state, we need to make sure that the operator insertion τ is within the asymptotic region where the nucleon ground state dominates. Hence we need to choose the source-sink separation t' - tsuch that it is large enough to eliminate the excited state contaminations which are exponentially decaying with the distance from the source. However, as the source-sink separation t' - t gets larger, gauge fluctuations generate more noise, which makes the already-difficult-to-get signal worse. Thus the first step is to choose an optimal source which has a good overlap with the nucleon ground state, so that we do not have to have a very large source-sink separation to be able to do nucleon ground state physics. This is the source-tuning process which is done before production runs begin.

We have determined from our calculations last year that a Gaussian smeared source with a width of 6 units is optimal for our study. And a source-sink separation of 9 lattice units in the time direction will be large enough to suppress excited-state contaminations while at the same time small enough to guarantee reasonable signals.

We have also implemented and tested an improved technique to calculate the sequential propagators. The technique is described below.

Because every physical observable has to be gauge

² An additional set of four sources will be added in the future, as we recently discovered that the four sources on one gauge configuration give rise to independent results, and doubling the number of sources per gauge configuration will help improve our statistics at the end.

invariant, any gauge-variant contractions will vanish over a large, statistically independent, gauge ensemble. This property leads to the so-called "coherent-sink trick" [3], in which sequential propagators for different forward propagators can be computed simultaneously. If we have a three-point function constructed from a forward propagator and an independently calculated sequential propagator from that forward propagator, the contraction looks like Fig. 5(a). When multiple sequential propagators are calculated at the same time, in addition to the diagram in Fig. 5(a), we will also have diagrams like Fig. 5(b), where the red lines are contaminations from the other sources. Note that the blue line is in no way connected to the red lines, as they come from different sources. Hence this diagram is not gauge invariant, and should average to zero over a large gauge ensemble.

(a)The usual nucleon three-point contraction from a forward propagator and an independently calculated sequential propagator.

(b)The contamination from the other source to the nucleon three-point function with the *coherent-sink* method. The red lines are propagators from the other source(s).

This allows us to calculate the sequential propagators corresponding to different sources on one lattice simultaneously, instead of having to calculate sequential propagators for different sources separately. For our calculations with four sources per lattice, originally 16 sequential propagator calculations are needed (4 per source). With this new technique, we will also need to do 4 sequential propagator calculations, earning us a factor of 4 reduction in computation time. This method was implemented and tested later last year. Thus for most of sequential propagator calculations, the old, unimproved, technique was utilized.

2.2 Usage Status

The allocation for FY2011 was started on May 3, 2011. By March 1, 2012 when this report was written, we have used about 50% of our allocated time, which amounts to 6,420,480 core × hours. On average, we were able to use 5% of our total allocation each month, or 642,048 core × hours/month. The projected usage by the end of March 2012 will be roughly 55% if the throughput stays the same. Our usage history as of March 1, 2012 is shown in Figure 6.

Figure 6: Usage history from May 3, 2011 to March 1, 2012. The horizontal axis is the date and the vertical axis is the percentage of the total allocation actually used.

One thing to note is that we obtained an independent allocation from the US National Science Foundation on the US TeraGrid/XSEDE clusters. Thus we

divided our efforts for the project into two parts. On TeraGrid we focused on the light ensemble, while on RICC the focus was given to the heavy ensemble. The RICC resources we have used so far enable us to finish the computations of $165 \times 4 \times 4 = 2640$ sequential propagators for the m_n=250 MeV ensemble, hence generating $165 \times 4 = 660$ nucleon three-point functions. We have also generated $165 \times 4 = 660$ forward propagators for this ensemble at four other source locations on the same gauge configurations (t=8, 24, 40, 56) to double the statistics. On the light, m_n=170 MeV, ensemble, 112 forward propagators and 32 sequential propagators were generated.

We also re-generated sequential propagators on 53 configurations of the heavy ensemble to test our implementation of the coherent-sink technique as described previously. The total use in the past year is summarized in Table 1.

Table 1: Propagators generated on RICC during the period May 3, 2011 to March 1, 2012. . # f.p. stands for the number of forward propagators. # s.p. stands for the number of sequential propagators.

Pion Mass	# f.p.	# s.p.	Total
$170 { m MeV}$	112	32	144
$250 { m MeV}$	660	2960	3620

We have also used a small fraction of the time to do algorithm and code improvement. The total percentage of time used for this purpose is estimated to be less than 5% of the total usage. A result of such improvements is that we can now do the propagator calculations twice as fast, thanks to the Mobius-accelerated Domain Wall inverter [17]. The timing with the new code is 2560 core × hours per propagator on the light ensemble, and 1664 core × hours per propagator on the heavy ensemble, as opposed to 5376 core × hours and 2560 core × hours, respectively, with the unimproved code. With this timing, 6,023,680 core × hours would be needed to generate the 250-MeV propagators listed in Table 1, and 368,640 core \times hours to generate the 170-MeV propagators, which constitute 98% of the total usage to date, leaving 2% for the algorithmic improvement and code testing.

3 . Preliminary Results

The resources we have used on RICC allowed us to obtain substantial statistics to perform some initial analysis of the key observables we outline in Section 1. In particular, we have obtained preliminary results for the nucleon axial charge, nucleon vector and axial vector form factors and the nucleon strangeness content. Even though a publication in refereed journals is still a work-in-progress, we have presented our preliminary results at several international conferences and symposiums [18,19]. We summarize some of our results below.

3.1 Nucleon axial charge

As we mentioned previously, being able to calculate nucleon axial charge on the lattice serves as a precision test of QCD. Before we can reliably determine g_A/g_V on the lattice, we have to keep systematic errors such as finite volume effects and chiral extrapolation errors under control. This is one of the strong motivations for our calculations at small pion masses and a large volume.

In Figure 7, we plot our results from the 170 MeV and 250 MeV ensembles (blue stars) along with recent RBC results (red crosses) as a function of $m_{\pi}L$. The 250 MeV result agrees with the earlier calculations done with the Iwasaki gauge action on the 24³×64 lattices of a similar $m_{\pi}L$, confirming our previous observation of the $m_{\pi}L$ -scaling, which is an indication of finite volume effects. The result from the light ensemble still has a rather large statistical error (~8%), and it is hard to say if the downward trend will continue. We are working to improve the statistics on this light ensemble, and a more conclusive result is to be expected in the near future.

Figure 7: Nucleon axial charge as a function of the product of pion mass and the lattice extent, $m_{\pi}L$. The blue points are the new results from the DSDR+I lattices as calculated on RICC and US NSF TeraGrid resources.

3.2 Nucleon vector form factors

Nucleon vector form factors can be measured experimentally through elastic electron-proton scattering. And the results can be used to determine the proton (p) and neutron (n) charge radii, magnetic moments and the magnetic radii. In our calculations, we have not included the disconnected diagram contribution as shown in Figure 4, which limits us to study only the isovector quantities (difference between proton and neutron). We have now analyzed the data for the 250-MeV ensemble, and the preliminary results are shown in Figure 8 and Figure 9, which represent the nucleon isovector Dirac form factors $F_1(q^2)$ and the Pauli form factors $F_2(q^2)$, respectively. The dashed lines are empirical fits to the experimental measurements. At $m_{II}=250$ MeV, the lattice results for $F_1(q^2)$ deviate from the experiment as one would expect. $F_2(q^2)$ at the same pion mass coincide with the experimental curve, which may be due to the large statistical errors on this quantity (about 8%, compared to 2-3% for $F_1(q^2)$). In both cases, lattice results show the expected trend to approach the experimental curve compared to previous studies with heavier pion masses, which is encouraging. Analysis for the

170-MeV ensemble is still in progress.

Figure 7: Isovector Dirac form factors as a function of the momentum transfer.

Figure 8: Isovector Pauli form factors as a function of the momentum transfer.

3.3 Nucleon strangeness content

As we mention in the Introduction, we can determine the strangeness content of the nucleon by calculating the derivative of the nucleon mass with respect to the strange quark mass. While we include only one value for the strange quark mass to generate the gauge configurations, we are able to "reweight" these gauge configurations with a number of different strange quark masses, m_s. The results for the nucleon mass with these reweighted strange quark masses are shown in Figure 10. From these results we can extract the slopes of M_N as a function of m_s and determine the strangeness content of nucleon defined as $f_{T_s} = dM_N / dm_s \times m_s / M_N$. In Figure 11 we show the recent results for f_{T_s} from different lattice calculations. The brown diamonds are from

current calculations, which still suffer from large statistical uncertainties and may need more reweighting factors and nucleon correlators to improve the statistical accuracy.

Figure 9: Nucleon mass as a function of the reweighted strange quark mass.

Figure 10: Nucleon strangeness content from different calculations.

4 . Conclusion

We have made substantial progress towards completing this project. Our results for the 250-MeV ensemble show great promise of answering a lot of our questions regarding finite volume effects, chiral extrapolations and eventually producing results that will be important to both experimentalists and theorists. However, our results still suffer from large statistical uncertainties, and improved statistics will be needed to have a great impact with our results.

5 . Schedule and prospect for the future

We plan to double the statistics for both the light and heavy ensembles. We are also working on a new noise-reduction technique, the Low-Mode Averaging (LMA), which may improve the signals further by calculating low-lying eigen modes exactly on the existing configurations. And then our focus will be on performing comprehensive data analysis to obtain physical results. These will be done in the next year. Eventually we would like to have the calculations done on a second lattice spacing so that a continuum extrapolation can be performed, but such an endeavor will be another multi-year project.

6 . If you wish to extend your account, provide usage situation (how far you have achieved, what calculation you have completed and what is yet to be done) and what you will do specifically in the next usage term.

As we described in Section 2, we have used about 50% of the allocation by March 1, 2012. And by the end of March, we expect to finish 55% of our total allocation. The calculation we have completed so far is shown in Table 1.

We wish to extend our accounts to finish the calculations at four additional sources on the heavy ensemble. So far we have completed all 660 of the forward propagators and 108 out of 660 sequential propagators on the original 165 gauge configurations. There have been about 36 new gauge configurations on which we need to calculate at eight different source locations. This amounts to $36 \times 8 = 288$ forward propagators, and $36 \times 8 = 288$ sequential quark propagators (two sets of coherent sequential propagators). We would also like to complete the

calculations on about 100 new gauge configurations for the light ensemble. Each configuration requires 4 forward propagators and 4 coherent sequential propagators, or $100 \times 8=800$ in total, to complete four source locations. We have requested computation time on the US NSF resources to compute four other source locations, making the total source locations on the light ensemble also eight, the same as the heavy ensemble.

The calculations we wish to do are summarized in Table 2. Using the timing in Section 2, we project that these calculations will require $800 \times 2560 + 1128 \times 1664 = 3,924,992$ core × hours.

Table 2: Propagators we wish to generate on RICC in FY2012. # f.p. stands for the number of forward propagators. # s.p. stands for the number of sequential propagators.

Pion Mass	# f.p.	# s.p.	Total
$170 { m MeV}$	400	400	800
$250 { m MeV}$	288	552 + 288	1128

7 . If you have a "General User" account and could not complete your allocated computation time, specify the reason.

We will be able to use about 55% of our allocated computation time by the end of the allocation period. The reason why we could not complete all the allocation is perhaps the oversubscription of the system. Given that our allocation has a lower-priority Rank 2, our jobs could not be executed as soon as they were submitted.

References:

 C. Allton et al. Physical Results from 2+1 Flavor Domain Wall QCD and SU(2) Chiral Perturbation Theory. Phys. Rev. D, 78:114509, 2008.

[2] J. D. Bratt et al. Aspects of Precision Calculations

of Nucleon Generalized Form Factors with Domain Wall Fermions on an Asqtad Sea. PoS, LATTICE2008:141, 2008.

[3] J. D. Bratt et al. Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions. Submitted to Physs Rev. D, 2010, arXiv: 1001.3620 [hep-lat]

[4] H.-W. Lin, T. Blum, S. Ohta, S. Sasaki, and T. Yamazaki. Nucleon structure with two flavors of dynamical domain-wall fermions. Phys. Rev. D, 78(1):014505, 2008.

 [5] S. Ohta. Nucleon structure functions from dynamical (2+1)-flavor domain wall fermions.
 Porceedings of Science, LATTICE 2009:131, 2009.

[6] S. Ohta and T. Yamazaki. Nucleon structure with dynamical (2+1)-flavor domain wall fermions lattice qcd. Proceedings of Science, LAT 2008:168, 2008.

[7] K. Orginos, T. Blum, and S. Ohta. Nucleon structure functions with domain wall fermions. Phys. Rev. D, 73:094503, 2006.

[8] S. Sasaki, T. Blum, and S. Ohta. A lattice study of the nucleon excited states with domain wall fermions. Phys. Rev., D65:074503, 2002.

[9] S. Sasaki, K. Orginos, S. Ohta, and T. Blum. Nucleon axial charge from quenched lattice qcd with domain wall fermions. Phys. Rev. D, 68:054509, 2003.

[10] S. N. Syritsyn et al. Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory. Physical Review D, 81:034507, 2009.

[11] T. Yamazaki, Y. Aoki, T. Blum, H.-W. Lin,
M. Lin, S. Ohta, S. Sasaki, R. J. Tweedie, and J. M.
Zanotti. Nucleon axial charge in (2+1)-flavor
dynamical-lattice qcd with domain-wall fermions.
Phys. Rev. Lett., 100:171602, 2008.

[12] T. Yamazaki, Y. Aoki, T. Blum, H.-W. Lin, S. Ohta, S. Sasaki, R. J. Tweedie, and J. M. Zanotti. Nucleon form factors with 2+1 flavor dynamical domain-wall fermions. Physical Review D, 79:114505, 2009. [13] C. Jung. Status of dynamical generation.

Proceedings of Science LAT2009:002, 2009

[14] T. Blum et al. Quenched lattice qcd with domain wall fermions and the chiral limit. Phys. Rev., D69:074502, 2004.

[15] Nucleon structure from RBC/UKQCD 2+1 flavor DWF dynamical ensembles at a nearly physical pion mass. S. Ohta for the RBC and UKQCD Collaboration, Proceedings of Science (Lattice 2010), 152 (2010).

[16] Nucleon structure from 2+1 flavor domain wall QCD at nearly physical pion mass. S. Ohta for the RBC and UKQCD Collaboration. To appear in Proceedings of Tropical QCD (2010).

[17] H. Yin and R. D. Mawhinney. Improving DWF Simulations: the Force Gradient Integrator and the Möbius Accelerated DWF Solver. *PoS*, LATTICE2011:051, 2011.

[18] M. Lin and S. Ohta. Nucleon structure from 2+1-flavor dynamical DWF lattice QCD at nearly physical pion mass. 2011. 7 pages, 5 figures, talk presented at Erice School "From Quarks and Gluons to Hadrons and Nuclei," September 16-24, 2011, Erice, Sicily.

[19] S. Ohta. Nucleon structure from 2+1f dynamical DWF lattice QCD at nearly physical pion mass. 2011. arXiv:1111.5269.

[20] Y. Aoki et al. Continuum Limit Physicsfrom 2+1 Flavor Domain Wall QCD. *Phys.Rev.*, D83:074508, 2011.

[21] C. Kelly. Continuum Results for Light Hadronic Quantities using Domain Wall Fermions with the Iwasaki and DSDR Gauge Actions. To appear in the proceedings of Lattice 2011: 29th International Symposium on Lattice Field Theory, Squaw Valley, Lake Tahoe, California, 10-16 Jul 2011. arXiv:1201.0706.

Fiscal Year 2011 List of Publications Resulting from the Use of RICC

[Proceedings, etc.]

- S. Ohta [for the RBC and for the UKQCD Collaborations], "Nucleon structure from 2+1f dynamical DWF lattice QCD at nearly physical pion mass", arXiv:1111.5269 [hep-lat]. Proceedings for Lattice 2011, Squaw Valley, CA, USA, July 2011. To be published in Proceedings of Science (Lattice 2011), 168 (2012).
- M. Lin and S. Ohta [for the RBC and UKQCD Collaborations], "Nucleon structure from 2+1-flavor dynamical DWF lattice QCD at nearly physical pion mass", arXiv:1112.5489 [hep-lat]. Proceedings for Erice School "From Quarks and Gluons to Hadrons and Nuclei," September 16-24, 2011, Erice, Sicily. To be published in Progress in Particle and Nuclear Physics (2012).

[Oral presentation at an international symposium]

- S. Ohta, Nucleon structure from 2+1f dynamical DWF lattice QCD at nearly physical pion mass, The 29th International Symposium on Lattice Field Theory, Squaw Valley, Lake Tahoe, California, July 11-16, 2011.
- 2. S. Ohta, Nucleon structure from 2+1-flavor dynamical DWF lattice QCD at nearly physical pion mass, Erice School "From Quarks and Gluons to Hadrons and Nuclei," September 16-24, 2011, Erice, Sicily.

[Others]

- Presentation: M. Lin, "Quarks and Gluons on Supercomputers", Physics Colloquium, University of Iowa, Iowa City, Iowa, March 7, 2011.
- 2. Presentation: M. Lin, "QCD and Beyond on the Lattice", Nuclear Theory/RIKEN Seminar, Brookhaven National Laboratory, Upton, New York, March 11, 2011.
- 3. Presentation: M. Lin, "Quarks and Gluons on Supercomputers", Physics Colloquium, City College of New York, New York, March 17, 2011.
- Presentation: M. Lin, "QCD and Beyond on the Lattice", Seminar, Institute of Nuclear, Particle, Astronomy and Cosmology (INPAC) at Shang- hai Jiao Tong University, Shanghai, China, August 18, 2011.