Quantum Chemistry on GPUs 名大 エコトピア 安田 耕二 クロスアビリティ 古賀良太

Summary of ab initio calculation GPU acceleration of Density functional calculation (Gaussian), Fragment molecular orbital calculation (GAMESS)

Density Functional Theory (DFT)

Kinetic
energyNon-local : pseudo or Hartree-Fock
exchange potential
$$[-\nabla^2/2 + V_L(r) + \hat{V}_{NL}]\psi_i(r) = \varepsilon_i\psi_i(r)$$
Wave function $V_L(r) = -\sum_c \frac{Z_c}{|r-R_c|} + \int \frac{\rho(r')}{|r-r'|} dr'$
Electrostatic potential
from nuclei / electrons $+ V_{xc}(r)$
Exchange-correlation
Functional of ρ

Electron density $\rho(r) = 2\sum_{i} |\psi_{i}(r)|^{2}$ Basis set expansion : $\psi_{i}(r) \stackrel{i}{=} \sum_{a} C_{a}^{(i)} \chi_{a}(r)$ Eigenvector of Fock matrix gives expansion coef C.

Choice of basis sets χ

Contracted Gaussian (GTO)

Small # of basis (10-30/atom), easy to diagonalize. Complicated program

Plane wave: communication bottleneck (FFT) Wavelet

Localized in real and reciprocal space

Real-space grid

- **Discretize** ∇^2 , simple program
- Communication bottleneck
- Large basis (200 point/Si atom, 2000/C atom)

Plane wave

$$\psi(r) = \frac{1}{\sqrt{\Omega}} \sum_{k} \varphi(k) \exp(ik \cdot r)$$

of basis function: more than 10⁵Cost: iterative diagonalization (VASP, 97%)

$$\hat{h}\psi = \left[\left(-\nabla^2 / 2 \right) \psi \right] + \left[\left(V_L + +\hat{V}_{NL} \right) \psi \right]$$

k-space Real-space

 \rightarrow 1. Calculate $\hat{h}\psi$

 $\psi(r) = FFT[\varphi(k)], \quad \hat{h}\varphi = \frac{1}{2}k^2\varphi + IFFT[V_L\psi + \hat{V}_{NL}\psi]$ 28%CPU time
0.18%
15%
5%
17%
2. Diagonalize \hat{h} within $\varphi_a : \langle \varphi_a | \hat{h} | \varphi_b \rangle C_b = \varepsilon C_a$ Error $g = C_a(\hat{h}\varphi_a) - \varepsilon C_a \varphi_a$

- 3. Orthgonalize new basis $\varphi = (h_D - \varepsilon)^{-1} g$, to φ_a .

Plane wave+GPU Maintz, CPC 182, 1421 (2011)

FFT and BLAS parts dominate computational time. But because of data transfer just replacing them to GPU-libraries lowers the performance.

GPU task should be determined to minimize data transfer. GPU calculates $\varphi(k)$ for a given potential V.

→ 1. calculate
$$\hat{h}\psi$$

 $\psi(r) = FFT[\varphi(k)], \quad \hat{h}\varphi = \frac{1}{2}k^2\varphi + IFFT[V_L\psi + \hat{V}_{NL}\psi]$
28% CPU time 0.18% 15% 5% 17%
14x by GPU 14x 14x 9x
2 Send matrix $\langle \varphi_{\alpha} | \hat{h} | \varphi_{b} \rangle$ to CPU diagonalize it get C

2. Send matrix $\langle \varphi_a | h | \varphi_b \rangle$ to CPU, diagonalize it, get C_a . error $g = C_a(\hat{h}\varphi_a) - \varepsilon C_a \varphi_a$

– 3. Orthogonalize new basis $\varphi = (h_D - \varepsilon)^{-1} g$, to φ_a

Wavelet (BIGDFT)

Localized orthogonal in real and k space $\chi_{ijk}(r) = \phi(x/\Delta - i)\phi(y/\Delta - j)\phi(z/\Delta - k)$ $\psi(r) = \sum_{ijk} \psi_{ijk} \chi_{ijk}(r)$ ⁻¹⁵

Variable resolution, # of basis:10^{5~6} Operator—convolution (30 points)

$$(\nabla^{2}\psi)_{IJK} = \sum_{ijk} K_{I-i,J-j,K-k}\psi_{ijk}$$
$$K_{IJK} = T_{I}\delta_{J}\delta_{K} + \delta_{I}T_{J}\delta_{K} + \delta_{I}\delta_{J}T_{K}$$

$$\begin{array}{c} \left\langle \psi \left| V(r) \right| \varphi \right\rangle = \sum_{ijk} \widetilde{\psi}_{ijk} V_{ijk} \widetilde{\varphi}_{ijk} \\ \widetilde{\psi}_{IJK} = \sum_{ijk} M_{I-i} M_{J-j} M_{K-k} \psi_{ijk} \\ \end{array}$$
Wavefunction at (I,J,K) Potential at (I,J,K)

1D convolution × 3 Simple parallel task No global communication **Wavelet+GPU** Genovese, JCP 131, 034103 (2009) Iteratively diagonalization because of huge # of basis

→ 1. Electron density ρ_{ijk} 12%CPU time → 13x by GPU

- 2. Potential V_{ijk} by FFT 3%
- 3. $\hat{h}\psi$ 15% \rightarrow 18x

Transfer only nonzero elements.

- 4. Diagonalize \hat{h} in ψ_a , calculate error g
- 5. Solve $(\frac{1}{2}\nabla^2 \varphi \varepsilon)\psi = g$ by CG 20% \rightarrow 10x
- −6. Orthoogonalize new basis ψ with ψ_a 40%→6x
 Cholesky decomposition by using BLAS
 Orthogonalization $O(N^3)$: more than 80% in large system

Some standard cGTOs 3-21G: inner shell (K=3, 3 terms), valence (K=2)+ (K=1) 6-31G**: 6-31G+ (angular momentum of valence) +1
O : small number of basis (10~30/atom) easy to diagonalize, low communication analytical 2-electron integrals
× : convergence to complete, complicated program

Computational cost of DFT

Solve *FC*=*SC* ϵ with basis set expansion $\psi_i(r) = \sum_b C_b^{(i)} \chi_b(r)$ $\langle \chi_a | -\nabla^2 / 2 + V_{nuc} + V_{es} + V_{xc} | \chi_b \rangle C_b^{(i)} = \langle \chi_a | \chi_b \rangle C_b^{(i)} \varepsilon_i$

Matrix diagonalization: 5% CPU time

ES potential: $15 \sim 40\%$, $10^7 \sim 10^8$ tasks for 10^3 basis

$$\left\langle \chi_{a} \left| V_{es} \right| \chi_{b} \right\rangle = \sum_{cd} (ab \,|\, cd) D_{cd}, \quad D_{cd} = 2 \sum_{cd} C_{c}^{(i)} C_{d}^{(i)}$$
$$(ab \,|\, cd) = \int \frac{\chi_{a}(r) \chi_{b}(r) \chi_{c}(r') \chi_{d}^{i}(r')}{|r-r'|} dr' dr$$

XC potential: $40 \sim 80\%$, $10^6 \sim 10^7$ tasks

$$\left\langle \chi_a \left| V_{xc} \right| \chi_b \right\rangle = \int \chi_a(r) V_{xc}(\rho(r)) \chi_b(r) dr \approx \sum w_i \chi_a(r_i) V_{xc}(\rho(r_i)) \chi_b(r_i) \rho(r_i) = \sum \chi_c(r_i) D_{cd} \chi_d(r_i)$$

How to calculate ES potential?

Discretize $\nabla^2 J(r) = \rho(r)$ in real space $(J_{i+1,j} + J_{i-1,j} + J_{i,j+1} + J_{i,j-1} - 4J_{i,j})/h^2 = \rho_{i,j}$ Conjugate gradient: sparse matrix, communication $k^2 J(k) = \rho(k)$ Solve it in reciprocal space Only for smooth density, FFT requires communication **Coulomb's law** $J(r) = \int \frac{\rho(r')}{|r-r'|} dr' \qquad \rho(r') = \sum_{cd} D_{cd} \chi_c(r') \chi_d(r')$ 1 2e integral $\sum_{cd} (ab \mid cd) D_{cd}, \quad (ab \mid cd) = \int \frac{\chi_a(r)\chi_b(r)\chi_c(r')\chi_d(r')}{|r-r'|} dr' dr$ p(r) = q(r')**2**Hermite Gaussian $\sum (p | q) D_q$ Simpler formula of integrals

Hermite Gaussians

Expand product of two Gaussians with Hermite ones.

$$(x - A_x)e^{-\alpha(x - A_x)^2}(x - B_x)e^{-\beta(x - B_x)^2} = \sum_{t=0}^2 E_t^{11}H_t(x - P_x)e^{-\varsigma(x - P_x)^2}$$

$$|ab) = \sum_{t=0}^{ab} |p|$$
Herimte Gauss Λ_p

$$P = (\alpha A + \beta B)/\zeta$$
Basis χ_b

$$Center (A_x, A_y, A_z)$$
Exponent $\zeta = \alpha + \beta$

$$Center (B_x, B_y, B_z)$$

$$H_0(x) = 1$$

$$H_1(x) = 2x$$

$$H_2(x) = -2 + 4x^2$$

$$H_2(x) = -2 + 4x^2$$

$$H_3(x) = -12 + 8x^3$$

Expand electron density with Hermite Gaussians

$$\rho(r) = \sum_{ab} D_{ab} \chi_a(r) \chi_b(r) = \sum_p D_p \Lambda_p(r)$$

$$(ab \mid cd) = \int \frac{\chi_a(r) \chi_b(r) \chi_c(r') \chi_d(r')}{|r - r'|} dr' dr$$

$$J_{ab} = \sum_{cd} (ab \mid cd) D_{cd} = \sum_p E_p^{ab} \sum_q [p \mid q] D_q$$

11

Two-electron integral formula

$$\int p(r_1)q(r_2) / |r_1 - r_2| dr_1 dr_2 = (\mathbf{p} | \mathbf{q}) = (-1)^q [\mathbf{p} + \mathbf{q}]^{(0)}$$

$$p(r) = H_t(x - P_x)e^{-\zeta(x - P_x)^2} \times (y f \vec{X} f) \times (z f \vec{X} f)$$

Center **P** exponent ζ angular **p**

Simultaneously calculate $(p_x|p_x)...(p_y|p_z)$

$$\begin{bmatrix} \mathbf{0} \end{bmatrix}^{(m)} = (定教) \int_{0}^{1} u^{2m} e^{-Tu^{2}} du,$$

$$\begin{bmatrix} \mathbf{r} \end{bmatrix}^{(m)} = R_{i} \begin{bmatrix} \mathbf{r} - 1_{i} \end{bmatrix}^{(m+1)} - (r_{i} - 1) \begin{bmatrix} \mathbf{r} - 2_{i} \end{bmatrix}^{(m+1)}$$

$$\begin{bmatrix} (002) \end{bmatrix}^{(1)} = R_{z} \begin{bmatrix} (001) \end{bmatrix}^{(2)} - (2 - 1) \begin{bmatrix} (000) \end{bmatrix}^{(2)}$$

of intermediate ints

	S	р	d
[0] ^(m)	1	5	9
[r] ^(1~m)	1	35	330
$[r]^{(0)}$	1	35	165
(p q)	1	100	1225
FLOP	40	350	3200

Many intermediate integrals causes register spill Optimize to minimize it.

ES potential: implementation

 $J_p = \sum (p \mid q) D_q$ $p_0(r_1)$ tid 0: $J_{p0} + = (p_0|q_3)D_{q3}$ $(p \mid q) = \int \frac{p(r_1)q(r_2)}{|r_1 - r_2|} dr_1 dr_2$ $p_{15}(r_1)$ tid 15: $J_{p15} += (p_{15}|q_3)D_{q3}$ 1 thread calculates (p|q), multiply D_a , accumulate in J_p . $q_0(r_2), D_{q0}$ $16p \times 4q$ SIMD parallel. $q_3(r_2), L$ Different kernels for L_P , L_O =0-4. **Shared mem:** p_k, q_l centers, (p|q) are recalculated (10~40FLOPs / integral). exponents, D_{a} Host gets only J (FLOP/byte ratio \sim 200). Integral symmetry (p|q)=(q|p) is not used. Sort P, Q shells, loop over only whose Schwartz upper bound is large enough. $\sqrt{(p \mid p)} \times \sqrt{(q \mid q)} D_q$

Accuracy requirement

Float number: $r = \pm f \times 2^{e+127}$ s $e_0 \dots e_7 f_1 \dots f_{23}$

We examined numbers and magnitudes of terms in

 $J_p = \sum (p \mid q) D_q$ We assume roundoff errrors are random $\delta J \approx$ average of terms $|\times \sqrt{\#}$ of terms Relative error: $1/\sqrt{\#}$ of terms Small terms mainly contributes to J: single precision (GPU) is OK. Roundoff error of J comes from large integrals: double precision (CPU) required.

of terms in J_p (×10⁸, converged *D* of valinomycin)

procedure for ES potential

(1) Reorder basis in a FMM box |p): decreasing order of $(p|p)^{1/2}$ $|q\rangle$: decreasing order of $(q|q)^{1/2} D_q$ 2 Send p, q, D_a to GPU 3 Calculate $J_p = \sum (p | q)D_q$ on GPU 1 thread calculates (p|q). Integral symmetry are not used (1/2 efficiency). (4) Send J_p to the host, transform it to J_{ab} . Communication time < 10% of computation time Host-GPU bandwidth is enough to get J, but not (p|q).

Performance of kernels

Performance of kernels (in GFLOPS), peak performance ratio(%) (4096 P shells × 512 Q shells, random data)

	GPU (NVIDIA GTX580 1581 GFLOPS)		CPU (INTEL i7 3930K 6 cores 154/77 GFLOPS)	
momentum(LP,LQ)	Non-opt	Opt	SSE (4 float vector)	G09 double
0,0	624 (40)	625 (40)	69 (45)	29 (37)
1,1	669 (42)	666 (42)	54 (35)	20 (26)
2,2	903 (57)	893 (57)	72 (47)	17 (22)
3,3	1050 (66)	1100 (70)	94 (61)	11 (14)
4,4	590 (20)	675 (43)	49 (32)	9.5 (12)
5,4	203 (13)	645 (41)	37 (24)	9.2 (12)

Optimized kernel works better for high angular momentum L. Preformance of Gaussian09 dropped for large L.

Errors in Energy, ES potential

		taxol C ₄₇ H ₅₁ NO ₁₄		$\begin{array}{c} \text{valinomycin} \\ \text{C}_{54}\text{H}_{90}\text{N}_6\text{O}_{18} \end{array}$	
	Threshold for GPU	LDA PW91 321G 631G		LDA 321G	PW91 631G
_	All	-1.7[-3]	-3.2[-3]	-1.1[-3]	-1.1[-3]
E (au)	<mark>0.</mark> 1	-8.9[-5]	-8.6[-5]	-2.2[-5]	-1.4[-4]
	10 ⁻³	-2.0[-8]	-4.7[-7]	-2.2[-7]	-6.7[-7]
	All	1.2[-5]	1.4[-5]	1.5[-5]	1.5[-5]
J	0.1	1.0[-6]	3.8[-6]	1.1[-6]	4.2[-6]
	10 ⁻³	9.6[-9]	2.0[-8]	9.2[-9]	2.0[-8]

We can control errors by changing the GPU threshold. Threshold=10⁻³ is enough, 90% integrals are calculated in single precision. **Exchange-correlation term** $\langle \chi_a | V_{xc} | \chi_b \rangle \approx \sum w_i \chi_a(r_i) f(\rho(r_i)) \chi_b(r_i)$ V_{xc} : numerical quadrature^{*l*} (7000 points/atom) 1 Electron density $\rho(r_i) = \sum \chi_a(r_i) D_{ab} \chi_b(r_i)$ (15% time) sparse vector \times matrix $\stackrel{ab}{\times}$ vector product \rightarrow dense matrices (N~100), vector [$\chi_a(r_i)$] are recalculated on GPU send D matrix, receive $\rho(r_i)$ **2** XC potential f_i at r_i 3 V_{xc} matrix $\sum f_i \chi_a(r_i) \chi_b(r_i)$ (20%) matrix product (N~100) send f_i , receive V_{ab} Xa FLOP / byte~10²

Reducing data transfer time $\rho(r_i) = \sum_{kl}^n D_{kl} \chi_k(r_i) \chi_l(r_i)$ matrix size [nonzero $\chi_k(r)$ at r_i] is small [$n=20 \sim 400$]: difficult to off-load calculation to GPU.

× calculate $\chi_k(r_i)$, $\nabla \chi_k(r_i)$ with host and send them to GPU each element only used *n* times.

× keep $\chi_k(r_i)$, $\nabla \chi_k(r_i)$ on GPU's device mem. 1000 atoms =7 × 10⁶ points $\chi_k(r_i)$, $\nabla \chi_k(r_i)$ amount to 2~45GB

O calculate $\chi_k(r_i)$, $\nabla \chi_k(r_i)$ with GPU, keep some on GPU's shared mem, others recalculate. matrix blocking with $n_1=32$

Electron density: implementation

Pick 32 basis χ_a and 32 quadrature points r_i 128 threads repeat $1 \sim 3$ in SIMD way. (1) calculate $\chi_0(r_i) \sim \chi_{31}(r_i)$ for $r_0 \sim r_{31}$ $\chi_a(r_i) = \sum C_n e^{-\alpha_n (r_i - R_n)^2}$ $C_n \alpha_n, R_n$ are broadcasted from tex cache. (2) read 32 \times 32 matrix D_{ab} from device mem, calculate matrix product $A_a(r_i) = \sum D_{ab} \chi_b(r_i)$ 3 calculate $\chi_{32}(r_i) \sim \chi_{63}(r_i)$ for $r_0 \sim r_{31}$. inner product $\rho(r_i) + = \sum \chi_a(r_i) A_a(r_i)$

Exchange-correlation potential

Pick 32 basis χ_a and 32 quadrature points r_i . 128 threads repeat (1)~(4) in SIMD way

(1) calculate $\chi_0(r_i) \sim \chi_{31}(r_i)$, $F_0(r_i) \sim F_{31}(r_i)$ for $r_0 \sim r_{31}$

$$F_k(r_i) = \sum_i f_i \chi_k(r_i) + \mathbf{g}_i \cdot \nabla \chi_k(r_i)$$

(2) transpose $F_k(r_i)^l$

3 calculate $\chi_{32}(r_i) \sim \chi_{63}(r_i)$ for $r_0 \sim r_{31}$

4 32 × 32 matrix product $V_{kl} + = \sum F_k(r_i) \chi_l(r_i)$

All steps are executed on GPU to ^{*i*}reduce communication

Errors in Energy and XC potential

		Taxol		Valino	mycin
	Cutoff*	PW91 321G	PW91 631G	PW91 321G	PW91 631G
_	1.[-15]	6.5[-5]	3.0[-5]	8.0[-5]	5.4[-5]
E (au)	<mark>1.[-6]</mark>	6.5[-5]	3.1[-5]	7.9[-5]	5.7[-5]
(au) -	1.[-4]	6.3[-5]	3.1[-5]	7.8[-5]	5.6[-5]
	1.[-15]	4.8[-5]	4.8[-5]	6.3[-5]	5.9[-5]
V _{xc}	1.[-6]	4.8[-5]	4.8[-5]	6.3[-5]	5.9[-5]
	1.[-4]	4.8[-5]	5.0[-5]	6.4[-5]	6.1[-5]

XC potential calculated in single precision induced errors of 10⁻⁵ au, which is within chemical accuracy.

* Basis functions of $\chi_k(r_i)$ < cutoff are discarded.

The first result (2007)

Core2 Quad 2.66GHz (1core) + G80 Valinomycin ($C_{54}H_{90}N_6O_{18}$) PW91/6-31G 882 basis Intel Fortran +MKL + CUDA (β release)

G80 (333GFLOPs) is 60 times faster than a Core2 Quad. 23

Hartree-Fock exchange $\int \chi_a(r_1) \frac{D(r_1, r_2)}{|r_1 - r_2|} \chi_b(r_2) dr_1 dr_2 = \sum_{cd} (ac | bd) D_{cd}$ Un-contract Gaussian (3~7x FLOP) Use only (ac|bd)=(bd|ac) symmetry (4x FLOP) 8 × 8 threads calculate 1 K_{ab} element Reorder |ac), |bd) to minimize memory access

Contraction problem

基底 χ_a : K個のGauss関数の線型結合 $\chi_a(r) = \sum_{k=1}^{K} d_{ak} e^{-\alpha_k (r-A)^2}$

線型結合をばらしてK⁴個の積分を求め

- ① 誤差関数 $\rightarrow [0]^{(m)} \rightarrow [r]^{(0)} \rightarrow [p|q] \rightarrow [p|cd] \rightarrow [ab|cd]$

先にK和を計算すると3~7倍速い(Prism法)

中間積分の種類が増える(GPUでレジスタ不足)。 $a'b'p'(r)_{c'd'q'}^{(m)} = \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{l=1}^{K} d_{ai}d_{bj}d_{ck}d_{dl} \frac{\alpha^{a'}\beta^{b'}\gamma^{c'}\delta^{d'}}{\zeta^{p'}\eta^{q'}} [r]^{(m)}$

- ① 誤差関数→ $[0]^{(m)} \rightarrow [r]^{(0)}$
- 2 4重のK求和
- $(3) (r)^{(0)} \rightarrow (p|q) \rightarrow (p|cd) \rightarrow (ab|cd)$

Prism algorithm

[ab]と]cd]対に対して、[p]と]q]を決め

- ① 誤差関数→ [0]^(m) → [r]⁽⁰⁾ → [p|q] → [p|cd] → [ab|cd]
 の順に計算し、
- ② Primitiveを求和 $(ab | cd) = \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{l=1}^{K} d_{ai} d_{bj} d_{ck} d_{dl} [a_i b_j | c_k d_l]$
- 先に2の和を計算できる。計算量が減るが、中間積分の 種類が増える。

$$a'b'p'\binom{m}{c'd'q'} = \sum_{i=1}^{K} \sum_{j=1}^{K} \sum_{k=1}^{K} \sum_{l=1}^{K} d_{ai}d_{bj}d_{ck}d_{dl} \frac{\alpha^{a'}\beta^{b'}\gamma^{c'}\delta^{d'}}{\zeta^{p'}\eta^{q'}} [r]^{(m)}$$

- ① 誤差関数→ [0]^(m) → [r]⁽⁰⁾
- ② Primitiveを求和
- ③ $(r)^{(0)} \rightarrow (p|q) \rightarrow (p|cd) \rightarrow (ab|cd)$ Primitiveの求和は好きな位置でできる。

Hatree-Fock results by Martinez

Time of the first SCF iteration (sec, Huckel guess, 10⁻¹⁰ cutoff)

			GAMESS		G03	GPU	
CPU/G	PU	PenD	Core2Quad	Corei7	Core2Quad	GTX280	
			1 core	1 core	1 core		
GFLO	PS	12	5.6	13.2	2*2.8=5.6	933	167x
taxol	3-21G	282	157	87	110	3.0	37x
	6-31G	477	285	150	153	7.5	20x
valino	3-21G	730	378	209	253	5.5	46x
mycin	6-31G	1 226	789	361	342	14	24x

GAMESS is slower than Gaussian

GTX280 (160x faster) shows 20-40x acceleration, because

integrals are recalculated 6 times, uncontracted Gaussian needs 2.5~7x FLOP cost.

Drugs generated by Computational Chemistry

©wikipedia Zanamivir trade name **Relenza** Influenza Inhibitor

©wikipedia Erlotinib hydrochloride (trade name **Tarceva**) Lung cancer, pancreas cancer

Steve Jobs might have used this to extend his life...

Procedure of FMO(Fragment MO)

Acceleration of Environmental electrostatic potential (ESP)

Utilize GPGPU ERI J-matrix
 cd: basis on neighbor fragments

- Decompose protein into each amino acid
 - Conventional SCF is effective in normal amino acid because ERIs can be kept on disk (# of basis < 180).
 - ERI calculation is not a bottleneck in FMO. ESP is dominant.

Test Model

Insulin (PDBID:2HIU)

Small Protein 44 amino acids About 400 atom

System configuration

(1) Intel Core i7-3930K @3.2GHz (6 core), GTX580 x 2, 32GB, CUDA 4.0 (2) Intel Core i7-3930K @3.2GHz (6 core), GTX580 x 4, 32GB, CUDA 4.0 (3) Intel Core i7-3930K @3.2GHz (6 core), GTX680 x 2, 32GB, CUDA 4.0 (4) Intel Xeon E5-2650 @2.00GHz (32 core), a **TESLA K20m x 2**, 64GB, CUDA 5.0 + Intel Composer XE 12.0 + MKL 10.3

Total Energy Calculation of 2HIU

	Time [sec]	Total Energy [a.u.]
Original GAMESS	3279.944	-21635.4488652520
Our GPGPU work	790.527	-21635.4488649211

(1) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 2</u>, 32GB, CUDA 4.0
(2) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 4</u>, 32GB, CUDA 4.0
(1) + (2)

Error of total FMO energy is very small. No errors were observed in the energies of amino acids (monomer fragments).

Computational Time of FMO2-ESP and HF-SCF

	GAMESS	This work	speedup
ESP part(GPU)	2571.490	170.897	x 15.0
HF-SCF part(host)	708.454	619.630	x 1.14
Total	3279.944	790.527	x 4.15

(1) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 2</u>, 32GB, CUDA 4.0
(2) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 4</u>, 32GB, CUDA 4.0
(1) + (2)

Acceleration ratio of ESP is higher than total one. Integrals needed in monomer HF-SCF were kept on hostside memory. It is faster than direct SCF by GPGPU. # We accelerate HF-SCF with AVXed PRISM algorithm.

GeForce Benchmark (FMO2 HF-SCF Single Point)

	Time [sec]	Total Energy [a.u.]
Original GAMESS	7026.264	-21635.4488652592
Our work [GTX580 x 2](1)	1670.931	-21635.4488649623
Our work [GTX680 x 2](3)	1708.522	-21635.4488649862

(1) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX580 x 2</u>, 32GB, CUDA 4.0
(3) Intel Core i7-3930K @3.2GHz (6 core), <u>GTX680 x 2</u>, 32GB, CUDA 4.0
12 threads

TESLA Benchmark (FMO2 HF-SCF Single Point)

	Time [sec]	Total Energy [a.u.]
Original GAMESS	3467.644	-21635.4488651915
Our work [TESLA K20m x 2](4)	1629.643	-21635.4488651367

(4) Intel Xeon <u>E5-2650@2.0GHz</u> x 2 (16 core), <u>TESLA K20m x 2</u>, 64GB, CUDA 5.0
 # Total 64 threads in 2 nodes

Comparison between acceleration rates of ESP and total time (Insuline)

Basis set / method	(1) 3.2GHz 6 core + GTX680 (512 core) x 2		(2) 2.0GHz 32 core + TESLA K20 (2496 core) x 2		
	ESP	Total	ESP	Total	
6-31G / FMO2, Single Point	13.8	4.1	3.3	2.1	
6-31G* / FMO2, Single Point	16.6	4.4	4.7	2.5	
6-31G / FMO3, Single Point	19.5	3.7	4.8	2.3	
6-31G / FMO2, Grad	10.6	2.6	2.9	1.4	

Performance ratio of (2)/(1) is 1.1 by perk performance.

Conclusion about GPGPU FMO

- Mixed precision method worked very fine.
- Conventional algorithm with CPU was suitable for HF-SCF part in FMO2/3. Faster CPUs are also desirable.
- Acceleration of ESP benefited both energy and grad calculations.

Thank you for your attention.