Monte Carlo Particle Hydrodynamics and its application to astrophysics Takuya Matsuda, H. Isaka, H. Murata Kobe University H.M.J. Boffin ESO, Germany

Summary

- We develop an unconditionally stable explicit CFD schemes:
- Monte Carlo Particle Hydrodynamics (MCPH)
 - Boltzmann Particle Hydrodynamics (BPH)
 - Molecular Hydrodynamics (MH) <=DSMC</p>
- Cell Boltzmann method (CB)
- Boltzmann SPH (BSPH)
 - Tsuribe, Imaeda, Inutsuka

Steps in BPH

- Space is divided into Cartesian cells
- Finite number of particles $\sim 10^{6}$ - 10^{7}
- Particles fly freely between tⁿ and tⁿ⁺¹
 - Mass, momentum and total energy are conserved
- Relax into a (LTE) state stochastically at tⁿ⁺¹
 - Not necessarily Maxwellian
 - A class of Monte Carlo method
- A particle has internal degrees of freedom
 - Any value of ratio of specific heats

Most prominent character

- Unconditional stability
 - Time step is not restricted by the CFL condition, although explicit.
 - Seems to contradict with CFD wisdom
 - In N-S and Euler equation, time steps should be restricted by the CFL condition.
- Why?
 - Lagrangean nature
 - Particles may fly beyond as many cells as like.
 - (Numerical) viscosity is proportional to Δt

Other chatacteristics

- Positivity
 - Pressure and density do not become negative
 - It may happen in conventional CFD schemes
- Viscosity has a physical origin
 - Can handle N-S equation
- Gas of zero temperature can be handled easily
 Infinite Mach number
- Accuracy is increased by an ensemble average
 100% Parallelization
- Dynamic range of density can be large
 - Density does not proportional to number of particles
 - Contrast to MH and SPH

Disadvantage

- Statistical fluctuation
 - Need large number of particles
 - Restricted by memory size
 - $\sim 10^7$ particles /2GB
- Particle number may be increased by using parallel computers
 - Cray XT at NAO

Theoretical background

Three levels in the description of fluids

Level	Governing equation	Variables
1. Molecules	Newton equation	Position and velocity
2. Distribution function	Boltzman equation BGK eqaution	Distribution function
3. Continuum fluid	Hydrodynamic equation	Density, velocity, pressure

Classification of CFD methods

	Cell/grid	Particle method
Kinetic approach	Cell-Boltzmann Lattice Boltzmann	Molecular hydrodynamics Boltzmann particle hydrodynamics
Continuum approach	Finite difference Finite volume Finite element	SPH BSPH

BGK equation

$$\frac{\partial(nf)}{\partial t} + \mathbf{c} \cdot \nabla(nf) + \mathbf{F} \cdot \nabla_{\mathbf{c}}(nf) = \frac{n(f_0 - f)}{\tau}$$

- Collision term is approximated by a relaxation

 linear
- f_0 : Maxwellian distribution function
- *τ* : Relaxation time

Generalized BGK equation

- f_0 is not necessary Maxwellian
- Condition
 - Spherically symmetric in velocity space
 - Conservation law
 - f_M : Maxwellian
 - Q: $m, mc_j, mc^2/2$

 $\int nf_0 Q dV_c = \int nf_M Q dV_c = \overline{Q}$

Time splitting of BGK equation

• Distribution function: f; time step: Δt

$$\frac{\partial(nf)}{\partial t} = -\mathbf{c} \cdot \nabla(nf) - \mathbf{F} \cdot \nabla_{\mathbf{c}}(nf) + n^2 \mathbf{F}_{\text{coll}}(t)$$

$$nf(\mathbf{c}, t + \Delta t) - nf(\mathbf{c}, t)$$

$$= \Delta t \Big[-\mathbf{c} \cdot \nabla (nf) - \mathbf{F} \cdot \nabla_{\mathbf{c}} (nf) + n^{2} \mathbf{F}_{\text{coll}}(t) \Big] + O(\Delta t^{2})$$

$$nf(\mathbf{c}, t + \Delta t) = [1 - \Delta t \mathbf{c} \cdot \nabla - \Delta t \mathbf{F} \cdot \nabla_{\mathbf{c}} + \Delta t J] nf(\mathbf{c}, t)$$

$$\cong [1 + \Delta t J] [1 - \Delta t \mathbf{c} \cdot \nabla - \Delta t \mathbf{F} \cdot \nabla_{\mathbf{c}}] nf(\mathbf{c}, t)$$

$$[J] nf(\mathbf{c}, t) \equiv n^{2} \mathbf{F}_{\text{coll}}$$

Stochastic time integration

$$\frac{\partial nf}{\partial t} = \frac{\left(nf\right)_0 - nf}{\tau}$$

$$(nf)^{n+1} = \frac{\Delta t}{\tau} (nf)_0 + \left(1 - \frac{\Delta t}{\tau}\right) (nf)^n$$

$$P = \frac{\Delta t}{\tau} = \frac{\Delta t}{t_c} = \frac{C}{\lambda} \Delta t = \frac{C}{a\Delta x} \alpha \Delta x = \frac{\alpha}{a} \overline{C}$$

Steps in BPH

- Space is divided into Cartesian cells
- Finite number of particles $\sim 10^{6}$ - 10^{7}
- Particles fly freely between tⁿ and tⁿ⁺¹
 - Mass, momentum and total energy are conserved
- Relax into a (LTE) state stochastically at tⁿ⁺¹
 - Not necessarily Maxwellian
 - A class of Monte Carlo method
- A particle has internal degrees of freedom
 - Any value of ratio of specific heats

Numerical tests

Shock tube problem (Sod)

- Domain: 0 < x < 1
- Number of cells: 1000
- $\gamma = 1.4$
- t=0.16

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline p=1.0, \ \rho=1.0 \\ 0 \\ 2 \\ 2 \\ 4 \\ \mathbf{x} \\ 6 \\ 8 \\ 10 \end{array}$$

Test 1

Choice of velocity distribution f_0

Black: Spherical shell Red: Maxwellain

No difference

Test 1: density profile

Numerical solution vs analytic one Courant condition can be violated

Number of particles 100/low density section 800/high density section

CFL number~ 2α $\Delta t = \alpha \Delta x$

Test 3 Extreme density ratio

Density ratio 1:10⁻³

Test 4: Isothermal shock Averaging reduces statistical fluctuation of solution: Density and velocity

Ensemble average over 64 cases

Space average over 4 cells

Strong rarfaction: Sjögreen test

- Domain : 0 < x < 1
- Cell number 1000
- $\gamma = 1.4$
- u=2.0 (case 1: No vacuum)
- u=5.0 (case 2: Vacuum)

Sjogreen test $u_0=2$ a case without vacuum

Density and velocity

Temperature

Sjogreen test, $u_0=5$ a case with vacuum

Density and velocity

Temperature

Noh problem

- Computational domain : $r < 1, 0 < \theta < \pi/2$
- cells 200x200:
 2x2 cells/ macro-cell
- *γ*=5/3
- t=0.6

Result of Noh problem

No wall heating

Viscous flow Plane Poiseuille flow

Plane Poiseuille Flow : $\gamma = 1.0$

 \leftarrow L=1

F=0.1

a=1-10, $\alpha = 1$

$$V_{\text{unit}} = \sqrt{\frac{8}{\pi} RT}$$

Plane Poiseuille flow Kinematic viscosity: Knudsen number

Couette flow Viscous stress: Knudsen number

Astrophysical applications

Astrophysical applications

Inflow from L1 point $\gamma = 1.01$ Mass ratio=1 T=27

2D wind collision

3D wind collision

