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Summary

• We develop an unconditionally stable explicit 
CFD schemes:

• Monte Carlo Particle Hydrodynamics (MCPH)
– Boltzmann Particle Hydrodynamics (BPH)
– Molecular Hydrodynamics (MH)  <=DSMC

• Cell Boltzmann method (CB)
• Boltzmann SPH (BSPH)

– Tsuribe, Imaeda, Inutsuka



Steps in BPH
• Space is divided into Cartesian cells
• Finite number of particles ~106-107

• Particles fly freely between tn and tn+1

– Mass, momentum and total energy are conserved

• Relax into a (LTE) state stochastically at tn+1

– Not necessarily Maxwellian
– A class of Monte Carlo method

• A particle has internal degrees of freedom
– Any value of ratio of specific heats



Most prominent character
• Unconditional stability

– Time step is not restricted by the CFL condition, 
although explicit.

– Seems to contradict with CFD wisdom
• In N-S and Euler equation, time steps should be 

restricted by the CFL condition.

• Why？
– Lagrangean nature

• Particles may fly beyond as many cells as like.
– (Numerical) viscosity is proportional to Δt



Other chatacteristics
• Positivity

– Pressure and density do not become negative
• It may happen in conventional CFD schemes

• Viscosity has a physical origin
– Can handle N-S equation

• Gas of zero temperature can be handled easily
– Infinite Mach number

• Accuracy is increased by an ensemble average
– 100% Parallelization

• Dynamic range of density can be large
– Density does not proportional to number of particles
– Contrast to MH and SPH



Disadvantage

• Statistical fluctuation
– Need large number of particles
– Restricted by memory size
– ~107 particles /2GB

• Particle number may be increased by using 
parallel computers
– Cray XT at NAO



Theoretical background



Level Governing equation Variables

1.
Molecules

Newton equation Position and 
velocity

2. 
Distribution 
function

Boltzman equation
BGK eqaution

Distribution 
function

3. 
Continuum 
fluid

Hydrodynamic equation Density, velocity, 
pressure

Three levels in the description of fluids



Classification of CFD methods

Cell/grid Particle method

Kinetic approach Cell-Boltzmann
Lattice Boltzmann

Molecular 
hydrodynamics
Boltzmann particle 
hydrodynamics

Continuum approach Finite difference
Finite volume
Finite element

SPH
BSPH



BGK equation
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• Collision term is approximated by a relaxation
– linear

• f0 : Maxwellian distribution function
• τ: Relaxation time



Generalized BGK equation

• f0 is not necessary Maxwellian
• Condition

– Spherically symmetric in velocity space
– Conservation law

• fM : Maxwellian
• Q: m, mcj , mc2/2
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Time splitting of BGK equation

• Distribution function: f ;  time step:Δｔ
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Stochastic time integration

c

t t C CP t x C
t a x a

αα
τ λ
Δ Δ

= = = Δ = Δ =
Δ

( )

( ) ( ) ( )

0

1

0
1n n

nf nfnf
t

t tnf nf nf

τ

τ τ
+

−∂
=

∂
Δ Δ⎛ ⎞= + −⎜ ⎟

⎝ ⎠



Steps in BPH
• Space is divided into Cartesian cells
• Finite number of particles ~106-107

• Particles fly freely between tn and tn+1

– Mass, momentum and total energy are conserved

• Relax into a (LTE) state stochastically at tn+1

– Not necessarily Maxwellian
– A class of Monte Carlo method

• A particle has internal degrees of freedom
– Any value of ratio of specific heats



Numerical tests



X
0 2 4 6 8 10

p=1.0，ρ=1.0 p=0.1，ρ=0.125

Shock tube problem (Sod)

• Domain： ０＜ｘ＜１

• Number of cells: 1000
• γ=1.4 
• t=0.16



Test 1 
Choice of velocity distribution f0

Black: Spherical shell
Red: Maxwellain

No difference



Test 1: density profile

Number of particles 100/low density section
800/high density section

CFL number~2α
Δt=αΔx

Numerical solution vs analytic one Courant condition can be violated



Test 3 
Extreme density ratio

Density ratio 1:10-3



Test 4: Isothermal shock 
Averaging reduces statistical fluctuation 

of solution: Density and velocity

Ensemble average over 64 cases Space average over 4 cells



X
0 2 4 6 8 10

p=0.4,ρ=1.0, v=-u p=0.4,ρ=1.0,v=u

Strong rarfaction: 
Sjögreen test

• Domain ： ０＜ｘ＜１

• Cell number 1000
• γ=1.4 
• u=2.0 (case 1：

 
No vacuum)

• u=5.0 (case 2：
 

Vacuum)



Sjogreen test   u0 =2 
a case without vacuum

Density and velocity Temperature



Sjogreen test, u0 =5 
a case with vacuum

Density and velocity Temperature



X

Y
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ρ=1

p=0

Vr=-1

Noh problem

• Computational domain : 
r<1, 0<θ<π/2

• cells 200x200：
2x2 cells/ macro-cell

• γ=5/3
• t=0.6



No wall heating
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Result of Noh problem 



Viscous flow 
Plane Poiseuille flow



Plane Poiseuille Flow ： γ=1.0
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Computational domain -0.5<x<0.5

No. cells：
 

1000 

No. Particles：10/cell

F=0.1

a=1-10, α=1

Navier-Stokes eqn.

Eq. Motion

Flow field



Plane Poiseuille flow 
Kinematic viscosity: Knudsen number

Theoretical curves
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Couette flow



Couette flow 
Viscous stress: Knudsen number



Astrophysical applications



Astrophysical applications



Inflow from L1 point
γ=1.01
Mass ratio=1
T=27



2D wind collision
2000×2000
γ=5/3
No gravity
N_in=2e10
Pentium D
45 min



3D wind collision

View from z-axis x-axis

y-axis

Density and velocity

Bird eye view Number of particles
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