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Motivation 
Most production/commercial codes only 1st or 2nd

order accurate, i.e.               with p = 1 or 2
Though adequate for a wide range of applications, 
many problems require higher-order accuracy. For 
example:

Aeroacoustic problems;
Vortex dominated flow ...
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Introduction
Many criteria can be used to classify high-order 
methods

Based on type of grids: structured grid vs. 
unstructured grid high-order methods
Based of the type of solutions: continuous or 
discontinuous high-order methods

Continuous high-order methods
SUPG, RD, spectral element, ...

Discontinuous high-order methods: 
Discontinuous Galerkin, staggered-grid, spectral 
volume, spectral difference, flux reconstruction, ...
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Review of Godunov FV Method

Consider
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Godunov FV Method (cont.)

Assume the solution is piece-wise constant, or a 
degree 0 polynomial.
However, a new problem is created. The 
solution is discontinuous at the interface
In addition, the obvious solution

is unstable
A “shock-tube” problem solved
to obtain the flux 
by Godunov
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Extension to Higher-Order
The only way to improve the solution accuracy 
is to increase the polynomial degree of the 
solution at each cell
KEFV, DG, SV and SD methods all degenerate 
to the Godunov method when p = 0.
To represent a polynomial of higher than p=0, 
multiple DOFs are required, e.g.,

These methods differ on how DOFs are defined 
and updated.
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Flux Reconstruction Method 
Given the solution at SPs, build a solution 
polynomial in
Compute the flux at the SPs, and build an 
interior flux polynomial 
Compute Riemann fluxes at interfaces
Find a flux polynomial       one degree higher 
than the solution, which minimizes

( ) ( )i iF x F x−
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Flux Reconstruction Method (cond.) 
The use the following to update the DOFs

Different conditions results in different 
methods. In particular, if

the scheme is DG
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Lifting Collocation Penalty Approach
Consider

The weighted residual form is

Let     be the discontinuous approximate solution in Pk.
The face flux integral replaced by a Riemann flux

Performing integration by parts to the last term
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Lifting Collocation Penalty Approach (cont.)
Introduce the lifting operator

where                                         . Then we have

which is equivalent to

In the new formulation, the weighting function completely 
disappears! Note that     depends on W. 
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Lifting Operator – Correction Field
Obviously, the computation of    is the key. From

if           ,       can be computed explicitly given W. Define 
a set of “flux points” along the faces, and set of solution 
points, where the “correction field” is computed as shown. 
Then

: lifting coefficients independent of Q
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The LCP Formulation (cont.)
Finally the following equation is solved at the solution 
point j (collocation points)

The first two terms correspond to the differential equation, 
and the 3rd term is the “lifting penalty” term, thus the 
name LCP. If all the flux points coincide with the solution 
points, the formulation is the most efficient
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Computation of the Interior Divergence
How to compute the red term?

Lagrange polynomial (LP)
Compute the fluxes at the solution points, and then 
generate Lagrange flux polynomials
Take the divergence at the solution points

Chain rule (CR)

More accurate!
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Recovering the DG, SV and SD Methods
Let         , the DG method is exactly recovered, at least 
in the linear case. For k = 1, 

For the SV method, select piece-wise constant W

For the SD method, more involved but doable for 
equilateral triangle
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LCP Algorithm
Compute the cell interior divergence using either the LP 
or CR approaches (no-coupling);
Compute the Riemann fluxes at the flux points, and also 
compute the normal component of the interior flux;
Scatter the corrections to the elements

Advantages:
No reconstruction cost
No mass matrix 1 2

3
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Mixed Grids

In order to minimize data reconstruction and 
communication, solution points coincide with 
flux points
For quadrilateral elements,
the corrections are one-
dimensional! 
Mass matrix is I for all 
cell-types

2,]ˆ[ fF  

1,]ˆ[ fF

3,]ˆ[ fF  
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Curved Boundaries
Transform the governing equations from the 
(curved) physical domain to the (straight) 
computational domain;
The LCP formulation is then applied to the 
transformed equations in the standard element
Straightforward!
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Test Cases
Accuracy studies for scalar conservation laws;
Accuracy study for the Euler equations
Flow over a cylinder
Flow over a NACA0012 airfoil
Flow over a sphere
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LCP-DG
Polynomial

degree k Grid size Regular Mesh Irregular Mesh
L2 error Order L2 error Order

1

10x10x2 2.44e-2 - 4.45e-2 -
20x20x2 5.89e-3 2.05 1.05e-2 2.08
40x40x2 1.46e-3 2.01 2.57e-3 2.03
80x80x2 3.64e-4 2.00 6.41e-4 2.00

2

10x10x2 1.88e-3 - 3.99e-3 -
20x20x2 2.38e-4 2.98 5.14e-4 2.96
40x40x2 2.98e-5 3.00 6.47e-5 2.99
80x80x2 3.73e-6 3.00 8.10e-6 3.00

3

10x10x2 7.55e-5 - 2.59e-4 -
20x20x2 4.94e-6 3.93 1.59e-5 4.03
40x40x2 3.08e-7 4.00 9.91e-7 4.00
80x80x2 1.93e-8 4.00 6.19e-8 4.00

5

10x10x2 7.53e-8 - 5.87e-7 -
20x20x2 1.18e-9 6.00 9.22e-9 5.99
40x40x2 1.85e-11 6.00 1.43e-10 6.01

1),(sin),(,0 0 =+==++ tatyxyxuwithuuu yxt π
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LCP-SV

1),(sin),(,0 0 =+==++ tatyxyxuwithuuu yxt π

Polynomial
degree k Grid size Regular Mesh Irregular Mesh

Order Order

1

10x10x2 5.94e-2 - 1.01e-1 -
20x20x2 1.45e-2 2.03 2.62e-2 1.95
40x40x2 3.72e-3 1.96 6.55e-3 2.00
80x80x2 9.23e-4 2.01 1.63e-3 2.01

2

10x10x2 2.84e-3 - 7.47e-3 -
20x20x2 3.71e-4 2.94 9.09e-4 3.04
40x40x2 4.73e-5 2.97 1.13e-4 3.01
80x80x2 5.97e-6 2.99 1.42e-5 2.99

3

10x10x2 1.04e-4 - 4.37e-4 -
20x20x2 6.53e-6 3.99 2.58e-5 4.08
40x40x2 4.11e-7 3.99 1.56e-6 4.05
80x80x2 2.57e-8 4.00 9.61e-8 4.02

errorL2errorL2
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LCP-DG on irregular mesh

1.),(sin5.025.0),(,0 0 =++==++ tatyxyxuwithuuuuu yxt π

Polynomial
degree k Grid size Irregular Mesh (LP) Irregular Mesh (CR)

Order Order

1

10x10x2 2.65e-2 - 1.84e-2 -
20x20x2 9.96e-3 1.41 5.06e-3 1.86
40x40x2 3.75e-3 1.41 1.35e-3 1.91
80x80x2 1.38e-3 1.44 3.50e-4 1.95

2

10x10x2 6.40e-3 - 2.75e-3 -
20x20x2 1.37e-3 2.20 4.04e-4 2.77
40x40x2 2.81e-4 2.29 5.50e-5 2.88
80x80x2 5.43e-5 2.37 7.27e-6 2.92

3

10x10x2 9.59e-4 - 3.68e-4 -
20x20x2 1.05e-4 3.19 2.58e-5 3.83
40x40x2 9.86e-6 3.41 1.82e-6 3.83
80x80x2 8.48e-7 3.54 1.27e-7 3.84

5

10x10x2 3.46e-5 1.07e-5 -
20x20x2 1.15e-6 4.91 2.61e-7 5.35
40x40x2 3.15e-8 5.19 4.45e-9 5.87
80x80x2 7.08e-10 5.48 8.27e-11 5.75

errorL2 errorL2



CFDC

Accuracy Study with the Euler Equations
Vortex propagation problem

Polynomial
degree k Grid size

Irregular Triangular Mesh - Test 1 
(LP)

Irregular Triangular Mesh - Test 2 
(CR)

Mixed Mesh
(CR)

Order Order Order

1

10x10x2 2.01e-2 - 1.39e-2 - 1.58e-2 -

20x20x2 6.67e-3 1.59 4.41e-3 1.66 5.32e-3 1.57

40x40x2 1.73e-3 1.95 1.08e-3 2.03 1.50e-3 1.83

80x80x2 4.84e-4 1.84 2.54e-4 2.09 3.54e-4 2.08

2

10x10x2 7.14e-3 - 4.41e-3 - 2.95e-3 -

20x20x2 1.07e-3 2.74 5.19e-4 3.09 5.62e-4 2.39

40x40x2 1.60e-4 2.74 5.84e-5 3.15 7.42e-5 2.92

80x80x2 2.29e-5 2.80 6.94e-6 3.07 8.63e-6 3.10

3

10x10x2 1.79e-3 - 6.70e-4 - 5.79e-4 -

20x20x2 1.40e-4 3.68 4.79e-5 3.81 5.05e-5 3.52

40x40x2 9.75e-6 3.84 2.96e-6 4.02 3.51e-6 3.85

80x80x2 6.96e-7 3.81 1.71e-7 4.11 1.89e-7 4.22

errorL2 errorL2errorL2
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Inviscid Flow over a Cylinder - Triangles
Mach = 0.3, LCP-DG, 4th Order
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Inviscid Flow over a Cylinder – Hybrid 1
Mach = 0.3, LCP-FR-DG, 4th Order
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Inviscid Flow over a Cylinder – Hybrid 2
Mach = 0.3, LCP-FR-DG, 4th Order
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Flow over NACA0012 Airfoil – Hybrid Mesh
Mach = 0.3, α = 5 degrees, LCP-FR-DG, 2nd-4th

Order
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Flow over NACA0012 Airfoil – Hybrid Mesh
Mach = 0.3, α = 5 degrees, 2nd Order

Pressure Mach
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Flow over NACA0012 Airfoil – Hybrid Mesh
Mach = 0.3, α = 5 degrees, 3rd Order

Pressure Mach
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Flow over NACA0012 Airfoil – Hybrid Mesh
Mach = 0.3, α = 5 degrees, 4th Order

Pressure Mach
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Flow over NACA0012 Airfoil – Hybrid Mesh
Wall entropy error
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Conclusions and Future Work
A lifting collocation penalty formulation is 
successfully developed for simplex cells, which 
is a generalization of the flux reconstruction 
method;
The formulation unifies the DG, SV and in a 
special case the SD method into a single family;
Weighting functions disappear from the 
formulation. Their effects are implicitly 
embedded in the lifting coefficients;
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Conclusions and Future Work (cont.)
The extension to mixed grids and curved 
boundary straightforward because no surface or 
volume integrals involved
Accuracy studies and benchmark test cases 
demonstrated the performance of the method
The extension to the Navier-Stokes equations 
are under way and will be reported in the future.
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