

Realization of Prof. Kuwahara's Messages - after almost 30 years' Effort in CFD -

Kozo Fujii with colleagues and students

Institute of Space and Astronautical Science Japan Aerospace Exploration Agency (JAXA)

6th Nobeyama workshop at Sanjo-Kaikan, U. Tokyo, Tokyo September 23, 2009

Outline

Background of CFD in aerospace

- Chapman's message in 1977
- HPC development and CFD effort since then

Main issues raised by Prof. Kunio Kuwahara

Status of recent CFD

- Supersonic base flow
- Flow Mechanism of DBD plasma actuator
- Acoustics from rocket /supersonic jets

Future possibilities

- Toward Capturing scale effects
- Real-time and Super real-time simulations

Summary

Dean Chapman's Message in 1977

Workshop "Computer Requirements for Computational Aerodynamics" held at NASA Ames R. C. in 1977.

Prof. Dean Chapman at Stanford Univ. said,

"There are two major motivations behind CFD .
(1) providing an important new technology capability
(2) economics

It would not change in coming decades."

There are many restrictions in the wind-tunnel experiment such as **scale effects**, wall and support interference, aerodynamic distortion, and else. The restriction of CFD comes from the speed and storage, but the technical trend shows that such limitations are rapidly decreasing.

Supercomputers vs. Large-scale WT

JAXA Supercomputer System (JSS) 135TFLOPS with 100 TB memory

Huge wind tunnel at NASA Ames R. C.

Capturing "SCALE EFFECT" was one of the most important motivations of CFD in aerospace.

Computer Performance

2008

Prof. Kuwahara's Messages

Flow is essentially three dimensional and unsteady. 2D computation even with high grid resolutions would not reproduce flow physics.

Use of turbulence model would contaminate simulation results. Direct simulations with insufficient grid resolution would be better than simulations with turbulence models.

He did not say unresolved direct (or LES) simulations are good enough. He did such simulations with knowing shortcomings of them. He was trying to find practical (not theoretical) boundary of the grid resolution for acceptable accuracy.

Himeno, Shirayama, Kamo, Kuwahara AIAA Paper 85-1617

Sirayama, Ohta, Kuwahara AIAA Paper 87-0605

Direct simulation of transonic flows

Obayashi's trial for flow with embedded shock waves

20-30 years CFD research

Status of recent CFD -1

Ex. 1 Supersonic base flows

LES/RANS hybrid vs. Unsteady RANS

Base Pressure Distributions

Kawai and Fujii, AIAA J., Vol. 43, pp. 1265-1275, 2005 Kawai and Fujii, AIAA J., Vol. 45, pp. 289-301, 2007

Boundary Layer Profile

Average mesh resolution on the lateral surface

 $(\Delta x^+, \Delta y^+, \Delta z^+) = (1727, 1404, 0.8)$

Status of recent CFD -2

Ex. 2 DBD plasma actuator for flow separation

RANS vs. LES simulations

*f_{base}=6*kHz *,BR*=10

LES simulation

RANS simulation

Burst effect to the CL

CL vs. frequency

Cp distributions over an airfoil

Status of recent CFD -3

No. 3 Rocket plume acoustics

Simulations of Practical Configurations

Example of simulations results

Pressure fields for different lift-off distance H/D

Result for the simulation of HIIA launching

Grid resolution required

 \Rightarrow

NASA SP-8072

≻20 grid points per a wave. ⇒ St_max=0.05

≻For FFT analysis
St_min=0.007 (3w@NEC SX-6)

Capturing frequency range up to 150Hz to 200Hz and SPL for each frequency component is required.

Improve space resolution

WCNS (Weighted Compact Nonliear Scheme) by Deng et al. Localized Artificial Diffusivity (LAD) by Lele et al.

Simple Jet Acoustic Problem

- for better understanding flow physics -

Simple free jet

Free jet impingement

Sound Pressure Spectrum

Point D

Point B

Comparison of WCNS with Conventional 2nd order TVD

Jet acoustics

OASPL

Back to the discussion of Scale effect

	Lower than	Re=10 ⁶	Higher than
	$Re=10^{5}$	Wind tunnel level	Re=10 ⁷
	MAV, UAV,		Civil transports
	Mars Aircraft		
No. Grid points	1.25 x 10 ⁹	$1.250 \ge 10^{11}$	$1.250 \ge 10^{13}$
(required memory size)	(1 TB)	(100 TB)	(10 PB)
Computer time	120 hours	12,000 hours	1,200,000hours
on SX-6 one node	(5 days)	(17 months)	(137 years)
Computer time	10-50 hours	1,000-5000 hours	100,000 -500,000
on 1 TFLOPS	(1-2 days)	(1-6 months)	hours
Computer time	0.1-0.5 hours	1-5 hours	100-500 hours
on 1 PFLOPS			(5-20 days)

Another Step to Real-time Simulations

Rough and optimistic estimation from the current data

(Ex.) Plume acoustic simulations for rockets **1 TFLOPS machine** One time step: Computer 2.4 × 10⁻¹ sec = Physical 6.1 × 10⁻⁶ sec

40 PFLOPS machine One time step: Computer 6.0×10^{-6} sec = Physical 6.1×10^{-6} sec

Summary

Prof. Kuwahara' messages in 1980's are now realized by many CFD researchers.

That is happening due to grid resolution improvement and supporting computer performance progress.

Prof. Kuwahara's approach is very necessary for capturing "Scale Effect" of Chapman's message in late 70's.

Real-time and super real-time simulations will open new use of CFD.

Prof. Kunio Kuwahara's Third Message

Do not discuss flow fields in technical papers, but only show the computed results. Authors' interpretation would influence to the readers' understanding of the results, and that should be avoided.