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１． Background and purpose of the project, 

relationship of the project with other projects 

 

Red blood cells continuously transport oxygen 

from the lungs to the capillaries near the tissue 

during their 120-day lifespan. The role of cell 

membranes, which are an important component of 

red blood cells, in this process is attracting more and 

more attention. Cell membranes, while protecting 

cell organelles from their surrounding micro-

environment, also allow nutrient transfer and 

facilitate cellular communication via transmembrane 

ionic currents. They are necessarily permeable to the 

low-molecular-weight substance as oxygen, and semi-

permeable to ionic species and water (through special 

channels or membrane-borne proteins like AQP1). 

Understanding mass transfer across permeable 

biomembranes is of great importance for studying cell 

mechanics and biological functions of living 

organisms. 

It has long been noted that the magnitude and 

the direction of water flux across cell membranes is 

related to the difference of hydraulic and osmotic 

pressure as introduced by Katchalsy & Curran in 

1965 [3]. Different from adherent cells spreading on 

substrates, red blood cells (RBCs) in motion often 

present large deformation when they go through a 

microcirculation system [4]. For the mass transfer 

through flexible and permeable membranes in motion, 

how the permeability of cell membranes, coupled with 

the fluid–membrane interaction, affects the mass 

transfer efficiency, is still an open question. 

 

 

２． Specific usage status of the system and 

calculation method 

In FY2018, about 700,000 core*hours were used 

for my Quick Use project. We used a parallel program 

based on OpenMp and MPI to numerically simulate 

cell movement and mass transfer. 

In the present work, we considered an immersed 

porous interface 𝐗𝑚  with thickness h and 

permeability coefficient K in incompressible fluids as 

shown in Fig. 1. The porosity per unit surface area is 

assumed and characterized as a one-dimensional 

porous channel for fluids and diffusive substances 

inside the membrane. 

 

Figure 1. Sketch of the mass transfer through 

immersed porous interface with an ideal one-

dimensional channel embedded in the membrane. 

 The concentration c of a substance satisfies 

the convection-diffusion equation, 

   𝑐𝑡
± + 𝐮± ∙ 𝛻𝑐± = 𝛻 ∙ (𝐷𝛻𝑐±)      (1) 

in the sub-domain 𝛺± separated by the moving 

interface marked as Γ. Take the spatial gradient on 

both sides, we have 

(𝒋𝐷
±)

𝑡
+ 𝛻(𝒖± ∙ 𝒋𝐷

±) = 𝐷𝛻𝛻 ∙ 𝒋𝐷
±             (2) 

Here u is the velocity of the surrounding liquid, 

and D is the diffusion coefficient of the substance in 

liquid. Mass flux through permeable interface 

relative to interface, i.e., moving with the interface 

on either side is formulated as 

𝐣𝛤
± = 𝑈𝑐±𝐧 − 𝐷𝛻𝑐±                      (3) 

where U is the transmembrane velocity through the 
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interface via a porous channel, and n stands for the 

unit normal vector of the membrane. The fluid 

velocity through the interface is formulated with 

Darcy’s law in the normal direction as 

𝑈 = −
𝐾

𝜇

𝑑𝑃

𝑑𝜉
                             (4) 

By integrating along the thickness of the membrane, 

we obtain 

𝑈 = −
𝐾

𝜇ℎ
[𝑝]                            (5) 

In this study, we extended the immersed 

boundary method in Gong el at.[1]. The cell 

membrane is considered to be a homogeneous 

isotropic porous medium. The solvent flux through 

the membrane depends on the pressure gradient 

across the membrane, the viscosity of the fluid and 

the membrane permeability. The solute flux contains 

contributions from both convection and diffusion. The 

specific derivation process is omitted, and the final 

governing equations based on immersed boundary 

framework are as follows. 

𝛻 ∙ 𝒖 = 0, 

𝜌
𝜕𝒖

𝜕𝑡
+ 𝜌(𝒖 ∙ 𝛻)𝒖 = −𝛻𝑝 + 𝛻 ∙ 𝜇(𝛻𝒖 + 𝛻𝒖𝑇) + 𝒇, 

𝒇(𝒙, 𝑡) = ∫ 𝑭(𝑿, 𝑡)𝛿(𝒙 − 𝑿)d𝑿
Γ

, 

𝑭 = −(𝑷 ∙ 𝛻) ∙ (𝝉 + 𝒒𝒏), 

𝒒 = ((𝑷 ∙ 𝛻) ∙ 𝒎) ∙ 𝑷 and 𝒎 = 𝐸𝑏(𝑷 ∙ 𝛻𝒏 − 𝑘𝑚
𝑅 𝑷), 

𝝉 =
2

𝜆1𝜆2

𝜕𝑊𝑠

𝜕𝐼1
𝑩𝑠 + 2𝜆1𝜆2

𝜕𝑊𝑠

𝜕𝐼2
𝑷, 

d𝑿

d𝑡
= −𝑈𝒏 + ∫ 𝒖(𝒙, 𝑡)𝛿(𝒙 − 𝑿)d𝒙

Ω
,  

    𝑈 = −
𝐾

𝜇ℎ

𝑭∙𝒏

|𝑿𝒔|
.       (6) 

The mass transportation equation of solute 

concentration c and diffusion flux 𝒋𝑫 in a monolithic 

form, i.e., immersed boundary method style 

formulation are as follows, 

𝑐𝑡 + 𝒖 ∙ 𝛻𝑐 = 𝛻 ∙ {𝐷𝛻𝑐

+ 𝐷∫𝒏Θ(𝒋Γ ∙ 𝒏 − 𝑈𝑐)𝛿(𝒙 − 𝑿)d𝑿
Γ

} 

      = 𝛻 ∙ {𝐷𝛻𝑐 + 𝐷 ∫ 𝒏Θ(𝒋𝐷 ∙ 𝒏)𝛿(𝒙 − 𝑿)d𝑿
Γ

} (7) 

(𝒋𝑫)𝑡 + (𝒖 ∙ 𝜵𝒋𝑫) + (𝜵𝒖) ∙ 𝒋𝑫 

= 𝑫𝜵{𝜵 ∙ 𝒋𝑫 − ∫ (Ψ𝒋𝑫 ∙ 𝒏)𝜹(𝒙 − 𝑿)𝒅𝑿
𝜞

}        (8) 

in which Θ =
2

|𝑈|
 tanh (

𝑃𝑒𝑚

2
) , Θ = 2tanh (

𝑃𝑒𝑚

2
) ,   𝑃𝑒𝑚 =

|𝑈|ℎ

𝐷𝑚
. The combination of Eqs. (7) and (8) provides a 

complete set of the governing equations for mass 

transfer through a porous interface.  

The whole blood flow in microvessels will be 

studied numerically with 3D simulations. The 

immersed boundary method is used to model the 

interaction between fluid and blood cells. The 

membrane of the blood cell is treated as a hyper-

elastic thin shell. The continuity equation and 

momentum equation will be solved using the SMAC 

method. To ensure stability when updating the 

membrane position, we used the second-order Runge-

Kutta method.  

 

３． Result 

    To validate the proposed method, mass transfer 

through a shrinking porous circular membrane in a 

two-dimensional setting is predicted and compared 

with its semi-analytical solution. For simplicity, we 

considered a circular linear elastic membrane 

without bending rigidity. The membrane expands 

uniformly to twice its reference radius as 2𝑟0 , and 

set this stressed configuration as its initial state. The 

membrane will shrink back to its reference 

configuration under the in-plane elastic stress. For 

the present setup with circular symmetry, zero flow 

velocity naturally satisfied the Navier-Stokes 

equation for this specific shrinking problem as a 

unique solution. Figure 2 shows that our numerical 

results are consistent with the theoretical solution. 
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Figure 2. Validation of the proposed method with 

shrinking of a circular porous membrane from its 

initial radius 2r0 to its reference configuration r0 : 

(a) shapes of the membrane at various times during 

the shrinking process; (b) comparison of the radius 

variation between numerical and analytical results. 

     

As an application of the proposed method, the 

effect of membrane permeability on oxygen 

unloading from RBCs in a circular pipe with 10 𝜇𝑚 

in diameter and 12 𝜇𝑚 in length is investigated. 

Parameter values adopted in the present numerical 

study are shown in Table 1. The Skalak hyperelastic 

membrane model and the Pozrikidis bending stress 

model were used for predicting membrane stress as 

described in Gong et al. [1]. The circular channel is 

defined with VOF functions  in a 12×12×12 𝜇𝑚3  

cube . No-slip conditions were used on the pipe 

boundary. Periodic conditions were used in the axial 

(flow) direction for velocity and concentration with 

the flow driven by a pressure drop along the flow 

inside the channel. 

The spatial variation of transmembrane 

velocity, are illustrated in Fig. 3. As shown in the 

figure, the diffusive flux through the membrane is 

the main factor for oxygen unloading, and the 

transmembrane flux is about two orders of 

magnitude smaller compared to the diffusive flux. 

The transmembrane velocity is positive when fluid 

flows out of the cell in the front, and takes negative 

values as the flow reverses in the rear, which is 

consistent with the stress-state of the cell 

membrane. The membrane in the front region is 

being stretched, while the rear region is being 

compressed inside the micro channel flow. 

 

Figure 3. Contours of the magnitude of 

transmembrane velocity distributions on a moving 

and deformed cell membrane. 

 

Fig. 4 shows the effects of membrane 

permeability on the local flow field next to the 

deformed cell membranes. As shown in Fig. 4a, fluid 

flow inside the domain encapsulated by a porous 

membrane is enhanced compared to that of a 

nonporous membrane. The vorticity inside the 

encapsulated region near the front of the membrane, 

and outside the membrane close to the rear of the 

membrane, is much greater for a permeable 

membrane than a nonporous membrane as shown in 

Fig. 4b. The vorticity on both sides of the membrane 

is calculated and interpolated onto the cell 

membrane as shown in Fig. 4c. The results indicate 

that its value near the membrane increases 

nonlinearly with the membrane permeability 

coefficients. 
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Figure 4. Effect of membrane permeability on the 

local hydrodynamics around the deformed cell 

membranes. (a) Relative velocity of the flow field to 

the centroid velocity of the cell, 𝐮 − 𝐔c , 

with/without membrane permeability, (b) the 

contours of the vorticity in flow field, |∇ × 𝐮|, 

with/without membrane permeability, (c) the 

averaged of the vorticity near cell membrane. 

 

４． Conclusion 

An immersed boundary method for modeling 

convection and diffusion mass through a deformable 

membrane with porosity was proposed in this paper. 

The membrane was modeled based on Darcy’s law as 

porous media. The concentration jump over the 

interface was described with a hyperbolic function in 

which a membrane Pelect number was introduced. A 

diffusive flux equation was derived and coupled with 

the concentration equation for a stable solution of the 

mass transfer in the immersed boundary style. The 

present numerical method presents a robust capacity 

for solving the concentration field with an oscillation 

membrane.  

As an application, oxygen unloading from the 

RBCs with large deformations in a micro channel was 

investigated. Numerical results suggest that for low 

Peclet number mass transfer with porous bio-

membrane in micro channels, membrane 

permeability changes local hydrodynamic conditions, 

such as vorticity, close to the membrane, which 

facilitates the diffusion around the membrane and 

enhances the mass transfer efficiency. 

 

 

５． Schedule and prospect for the future 

We have completed numerical analysis of mass 

transfer in a 10 𝜇𝑚 microvessel, and we have found 

that solvents and solutes exhibit different patterns on 

cell membrane. As is shown in Fig. 5. Along the 

profile of the deformed RBC, three distict regions of 

the transmembrane velocity can be obersved. The 

velocity decreases from the outflow region in the front 

to a transient region around the tip, and an inflow 

region in the rear.  

 

Figure 5. Transmembrane velocities along the cell 

membrane of a deformed red blood cell. 

Next, we would like to explore the corresponding 

changes of the ratio of area of the inflow region and 

that of outflow regions on the cell membrane in the 

capillaries with different diameters, especially in the 

capillaries with a diameter smaller than erythrocyte. 

Fedosov[2] employed mesoscale hydrodynamic 

simulations to predict the phase diagram of shapes 

and dynamics of RBCs in cylindrical microchannels, 

and found that a rich dynamical behavior (i.e. 

snaking and tumbling discocytes, slippers performing 

a swinging motion, and stationary parachutes) with 

different shear rates in capillaries with different 

diameters. The stable shape of RBC at different shear 

rates is shown in Figure 6. Recent studies of the 

effects of different steady state of RBC on the oxygen 

release in capillaries provide new insights into the 

questions: (1) Does the transport of the solvent across 

the cell membrane affect the final state of the cell? (2) 

will the changes of steady shape of RBC at different 

shear rates tube promote oxygen transport more 

efficiently to the tissue? Next we will do a series of 
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numerical experiments to explore these two issues. 

 

 

Figure 6. Simulation snapshots of a RBC in flow as 

dimensionless flow rate γ̇∗ = (𝑎)5,24. (𝑏)8, (𝑐)59.6[2]  

 

Currently, I have a “Quick Use” user account and I 

would like to get extension of computation facilities 

for next usage term (up to 31st March 2020) under 

the same user category. 
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