課題名(タイトル):

人工光合成に向けた遷移金属酸化物表面の第一原理電子状態計算

利用者氏名:○野田 祐輔*、畠山 允*、坂本 裕紀* 所属:* イノベーション推進センター 中村特別研究室

- 1. 本課題の研究の背景、目的、関係するプロジェク トとの関係 植物の葉緑素にはCaMn4O5というクラスター 分子が含まれ、このクラスターが天然の光合成に おける酸素発生の要となっている。このことから、 この酸化マンガンクラスターを模倣するような 材料を探索し、人工光合成を実現することが望ま れている。酸化マンガン結晶は、太陽光によって H₂O 分子から O₂ 分子を作りエネルギーを生み出 す新規電極材料の候補として注目され、電気化学 的または光化学的な手法を用いて酸化マンガン 結晶表面上で O2 発生するという実験的事実が報 告されている。現在では Pt や Pd など触媒性能 を有する貴金属を用いた酸素発生材料が知られ ているが、貴金属に頼らない新規の電極材料を実 現することが出来れば、エネルギー分野に革新を 起こすことが出来る。現在では、実験の研究は幾 つか報告されているが、理論計算の研究例は無い。 実験では詳細に解析することが出来ない部分を、 理論計算を用いて明らかにすることに大きな意 義がある。利用者は過去に欠陥・不純物のない酸 化マンガン結晶(バルク)の第一原理計算を行い、 電子状態の詳細を明らかにした。本研究では、酸 化マンガン結晶表面の第一原理計算を行い、電子 状態を明らかにすることを目的とする。
- 2. 具体的な利用内容、計算方法

密度汎関数理論 (DFT) に基づく第一原理計算 コード Quantum ESPRESSO (PWscf)を用い た。一連の計算では、ultrasoft 擬ポテンシャル、 PBE 汎関数を採用した。波動関数に対するカッ トオフエネルギーは 400 Ry、電荷密度に対する カットオフエネルギーは 40 Ry である。計算対象 は、 α 相 (cryptomelane-type) 酸化マンガン MnO₂の(100)および(110)表面モデルである。各 Mn 原子の磁気モーメントの初期値は、Mn⁴⁺に相 当する±3.0 μ B (starting_magnetization = 0.6, 又は-0.6) とした。 α -MnO₂ 結晶は通常、反強 磁性状態であるため、表面モデルでのスピン初期 配列も同様な反強磁性状態に設定した。使用した 表面モデルでは片面側の O 原子に H 原子終端を 施した。表面状態 (O 原子欠損の数) が異なるモ デルを、(100)表面では 4 個、(110)表面では 15 個作成し、それぞれ構造最適化計算を実行した。

3. 結果

α-MnO₂の(100)および(110)表面モデルの例 を図1および図2に示す。図中の紫色は上向きス ピン状態を示す Mn 原子、緑色は下向きスピン状 態を示す Mn 原子、赤色は O 原子、白色は H 原 子である。又、(100)および(110)表面モデルの表 面状態(O原子欠損の数)、表面形成エネルギー [Ry]、全磁気モーメント[µB]の値を、表1および 表 2 に示す。(100)表面モデルでは、表面形成エ ネルギーや磁気モーメントの値が小さく、Mn 原 子の価数の変化も見られなかった。磁気モーメン トが有限の値を取る原因として、表面に露出して いる 0 原子がわずかな磁気モーメントを持つこ とが関係している。(110)表面モデルでは、0 原 子欠損の数が増えると磁気モーメントが大きく なる傾向が見られる。(100)表面モデルの場合と 同様に、Mn 原子の価数の大きな変化は見られな いが、表面上の 0 原子がわずかに磁気を帯びる ことで、系全体の磁気モーメントが大きく変化し ていることを確認した。又、0原子欠損が大きい 場合、表面形成エネルギーが減少し、系全体の磁 気モーメントが著しく変化することを確認した。 両者の計算結果から、表面方向によって 0 原子 欠損による影響に差が生じていることが分かっ た。

平成 28 年度 利用報告書

図 2 α-MnO₂(110)表面モデル(O原子欠損なし)

表 1	$\alpha - MnO_2$	100)表面モデ	ルの計算結果
-----	------------------	----------	--------

モデル	0原子欠損	エネルギー	磁気モーメント
0	0	0.0331	-0.96
1	1	0.0385	-1.82
2	1	-0.0824	0.71
3	2	-0.0416	0.00

表2 0	$\chi - MnO_2$	(110))表面モデ	ルの計	·算結果
------	----------------	-------	-------	-----	------

モデル	0原子欠損	エネルギー	磁気モーメント
0	0	-0.0201	8.00
1	1	-0.0259	10.00
2	1	-0.1220	10.00
3	1	-0.0418	10.00
4	2	-0.0172	12.00
5	2	-0.0329	12.00
6	2	-0.0074	12.00
7	2	-0.0785	12.00
8	2	-0.0926	12.00
9	2	-0.0949	12.00
10	2	-0.0163	12.00
11	2	-0.1372	12.00
12	2	-0.2281	12.00
13	3	-0.1684	-10.00
14	6	0.0242	-9.22

4. まとめ

DFT 計算を用いて α-MnO₂ の(100)および (110)表面モデルの構造最適化を行い、電子状態 を求めた。α-MnO₂(100)表面モデルでは、O 原 子欠損による表面形成エネルギーや磁気モーメ ントの変化は小さいことが分かった。一方、α-MnO₂(110)表面モデルでは、O 原子欠損の数の違 いで、エネルギーや磁気モーメントに大きな変化 が見られた。

5. 今後の計画・展望

天然の光合成における CaMn₄O₅クラスターで は、各 Mn 原子の価数変化が起こり、最終的に O₂分子が発生する。本研究における MnO₂ 表面 モデルでも同様に、期待される Mn 原子の価数変 化が見られるような結晶表面のデザインを行う ことを目指している。本研究で扱った O 原子欠 損だけでなく、K・Ca 等のアルカリ金属・アル カリ土類金属元素を含むモデル、露出表面上に H₂O 分子を載せたモデル等、様々な表面モデルを 検討し、表面モデル内の Mn 原子の価数(系全体 の磁気モーメント)変化を検証したい。